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Abstract 

We describe a discontinuity detector that integrates visual information to 
suppress the pervasive noise in surface property data. The discontinuity detec-
tor is based on the notion of'constrained kernels'and'postulated discontinu-
ities.'The kernels arise as solutions to the diffusion equation in the presence 

of local, static boundary conditions provided by the postulated discontinuities. 
The resulting kernels smooth the surface property data; they are Gaussian-
like except near the postulated discontinuities. Unlike most visual integration 

schemes, our detector does not suffer from problems regarding computability 
and parameter specification; it is fast and accurate. In addition, the detector 
eliminates the pervasive'displacement errors'in surface property data. We 
describe these displacement errors, integrate intensity edges (as postulated dis-
continuities) with stereo depth and optical-flow to compute depth and motion 
discontinuities, and compare our detector to other discontinuity detection ap-
proaches. 

This is a reformated version of a paper submitted to the Second European 
Conference on Computer Vision in Santa Margherita Ligure, Italy. The original 

submission to ECCV'92 was dated 8 October 1991. 

1 Introduction 

The problem of discontinuity detection is of fundamental importance in computer 

v1s1on. A discontinuity represents a location in an image where some property of 

the surface in the imaged scene, such as depth or motion, changes abruptly. Such 

changes in surface property are important because, under some general assumptions, 

they correspond to boundaries between objects. Unfortunately, the detection of dis-

continuities is a difficult task because the surface properties computed by early vision 

algorithms are fraught with errors near the discontinuities themselves[l, 2]. 
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Somewhat surprisingly, few discontinuity detectors adopt a noise model consistent 

with the errors in surface property data near the discontinuities. Typically a spatially 

white, Gaussian noise process is assumed. However, as we illustrate in the next 

section, the noise is not spatially white; the surface property data is plagued by 

displacement errors near the actual, physical discontinuities. Based solely on surface 

property data there is no a priori method to identify these displacement errors -

additional information is required. Consequently, if a discontinuity detector does not 

model these displacement errors the detector will mark discontinuities as displaced 

from the physical discontinuity; clearly this is an error. 

Recently, studies on integration of visual information have shown that disconti-

nuity detection can be improved if prior, though uncertain, evidence concerning the 

discontinuity location exists[3]. This prior information properly locates the disconti-

nuity in spite of the displacement errors and then only the presence or absence of the 

discontinuity need be ascertained. We extend this recent work by providing a major 

reformulation and simplification of the discontinuity detector and also by definitively 

describing the displacement errors and their characteristics. 

The solution to the diffusion equation in the presence of postulated discontinuities 

provides the basis for our discontinuity detector formulation. The postulated discon-

tinuities provide the additional, local information needed to eliminate displacement 

errors and they also limit the surface reconstruction problem significantly enough to 

allow for efficient implementation. Essentially, the postulated discontinuities act as 

mirror boundary conditions for the diffusion equation solution and thereby inhibit 

the smoothing between neighboring lattice sites when one of the sites coincides with 

a postulated discontinuity. These local boundary conditions lead to Gaussian-like but 

slightly deformed constrained kernels. 

Most discontinuity detectors, whether based on integration of visual information 

or not, simultaneously seek to smooth the surface properties and to detect the dis-

continuities (refer to Section 4). We will argue that given the nature of displacement 

errors it is inappropriate to simultaneously smooth the surface while detecting dis-

continuities; the characteristics of displacement errors require their removal prior 

to discontinuity detection. Consequently, discontinuity detection can be considered 

as a variant to traditional edge detection[4, 5]; that is, as a sequential process of 
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convolution to eliminate the dominant noise followed by hysteresis on the gradient 

magnitude while suppressing neighbors to locate the discontinuity. The postulated 

discontinuities and resulting constrained kernels provide the means for removal of the 

displacement errors and permit formulation of the detector as a sequential process 

rather than as a simultaneous process. 

Besides eliminating displacement errors, postulated discontinuities provide a con-

venient mechanism to integrate visual information. Multiple visual cues can be 

combined at the locations of postulated discontinuities thereby ensuring registration 

among the visual cues. Our detector integrates visual information by using intensity 

edges to postulate the locations of discontinuities. We will not discuss the ,issues of 

integration nor the use of intensity edges in visual integration in any detail; numerous 

sources exist[6, 7, 8, 3]. It is however important to note that the postulated disconti-

nuities obviously cannot be the discontinuities. Ideally the postulated discontinuities 

are a superset of the discontinuities; although, the postulates are themselves noisy. 

The organization of this article is as follows. Section 2 contains a discussion of 

the displacement errors in surface property data produced by early vision algorithms. 

This section includes a simple, working model for these errors. In Section 3 we 

construct the constrained kernels based on the postulated discontinuities and then il-

lustrate the effectiveness of the kernels when applied to the displacement error model. 

In Section 4 the differences between our formulation and previous work on discon-

tinuity detection are described. Finally, Section 5 presents discontinuity detection 

results from surface property data computed from real images. 

2 Displacement Errors in Surface Property Data 

The :first step in our formulation is to describe the pervasive displacement errors. We 

show that, not unexpectedly, the noise is particularly bad near the discontinuities 

which we seek to detect. This observation mandates a discontinuity detector that 

uses prior information to postulate discontinuity locations. 

The smoothness constraint that is needed to regularize the ill-posedness of many 

early vision computations[lO] leads to displacement errors in surface property data. 

In order to examine these errors, we consider a typical early vision algorithm for the 
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Figure 1: Examples of multimodal regions in correlation detectors[9, 2] are illustrated 

below the left image from a stereo pair. The rnultirnodal regions are consistently near 
depth discontinuities. 

computation of optical :flow[ll]. Assume that two images of the same scene exist, 

E1(r) and E2(r), where r = x全十 yyis a vector in the image plane (with axes全

and fl) and E(戸） is the intensity measured by the imaging device at pixel (x, y). The 

fundamental problem is to find the correspondence between each of the pixels in the 

two images. The x-y translation in image coordinates between the two corresponding 

pixels is the disparity, d(『）， whered(r) = dェ(rJ金十も(r)y.A solution for d 1s that 

function which yields an extremum in the fqllowing functional: 

S() = j {c/J [E⑰ ,E釈＋布））］＋入II(▽加}dr. (1) 

Because of the smoothness constraint, 盈丙 mustbe a slowly varying function of r. If 

布） is assumed constant over regions of size A, then Equation 1 simplifies to 
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where S() is called the match score. The computation is a correlation in d(r) across 

尺thesolution is that d(戸） which yields an extremum in Equation 2. The analysis for 

stereo is similar except that for the computation of S(), r is restricted to lie on an 
epipolar line. 

The functional form of S() yields important information about the matching 

If S() is multimodal then, generally, the smoothness constraint has process[9, 2]. 

been violated. This occurs near discontinuities where part of region A correlates 

well at, say, d1 but another part of A correlates well at d2. Examples of multimodal 

correlation functions have been presented for optical flow[9] and stereo[2]. Figure 1 

contains three images; each image is accompanied by a binary map that highlights 

those pixels where the correlation function is multimodal. These binary maps were 

computed with a pixel-based stereo algorithm[2] in which¢>() of Equation 1 was the 

square of the difference between the intensity of each pixel in the・stereo pair and 

布） was found as the minimum of Equation 2. The figure shows that the multi-

modal regions always occur near discontinuities in depth and, in some cases, in places 

unrelated to discontinuities. 

Figures 2 and 3 illustrate displacement errors in stereo disparity. Displacement 

refers to one pixel near a discontinuity reporting the disparity of the pixels on the 

other side of the discontinuity; this displaced pixel is on the wrong side of the "actual" 

discontinuity. In Figure 2 the surface with disparity 2 and 3 is corrupted by 5 pixels in 

the middle-left of the figure with a disparity of 12. Figure 3 illustrates stereo disparity 

computed for several different patch sizes A (from Equation 2) oflinear extent L (see 

Reference [1] upon which this figure is based). Small patches lead to noisier disparity 

because of limited support in the intensity data. 

support but produce displacement errors. 

Larger patch sizes provide more 

In order to model displacement errors, consider two locally constant surfaces sep-

arated by a discontinuity at x = x'. Assume that the original (or actual) surface 

property is: 

a•(x) = 5d u(x'-x) = { Od 

゜
for x < x' 

for x > x', 
(3) 

where 8d is the magnitude of the discontinuity difference (sometimes referred to simply 

as'the discontinuity') about the site x'and u(x) is the Heaviside function. If we 
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Figure 2: Displacement errors in stereo disparity data are illustrated for a stereo 

pair with the left image shown above. The lower left image shows sparse disparities 
(squares) and the object boundary (circles) for a small region of the scene. Disparities 

from the lower object (at disparity 12) are mistakenly displaced into the upper ob-
ject (at disparity 2). These errors are characteristic of correlation-based early vision 

algorithms[l, 2]. The plot to the right is a slice of the sparse disparity data. The 

"indicated" discontinuity at x'+ W is displaced from the "actual" discontinuity at 

x'. Generally discontinuity detectors compute discontinuities at x'+ W; however, an 

ideal detector should produce discontinuities at x'. 

introduce a displacement error similar to those illustrated in Figures 2 and 3, the 

input to the discontinuity detector can be modeled as: 

d(x) = 8du(x'+ W-x) (4) 

where W is the displacement shift and it characterizes displacement errors. Our 

emphasis is on the factor W .1 Consideration of the matching process and close 

examination of~igure 3 suggests that the displacement shift, W, is commensurate 

with L, the extent of the matching region. Consequently, W can be quite large; this ｀
 

1Usually the discontinuity detector input is modeled as d(x) = 5d u(x'-x) + n(x) with n(x) 
assumed to be spatially white, Gaussian noise. This model for d(x) does not account for displacement 
errors. Extending our formulation in Equation 4 to include a Gaussian noise process presents no 
problem. 
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Figure 3: Stereo disparity as a function of patch size (based on Reference [1]). Dis-
continuities at 50, 100, 150, and 200 are introduced into synthetically created image 
data. A pixel-based stereo algorithm[2] computed the disparity. Near the introduced 
discontinuities, the computed disparities are systematically displaced from the actual 

discontinuity location. 

is not a one or two pixel "registration-like" error. It is a significant distortion of the 

object boundary. 

The preceding discussion has illustrated the nature of displacement errors. These 

displacement errors arise because of the multimodal behavior of the correlation func-

tion near discontinuities. The multimodal behavior arise as a consequence of violating 

the smoothness assumption used in early vision algorithms and because of the inherent 

uncertainly in occluded regions. The examples have illustrated displacement errors 

in stereo disparity; optical-flow algorithms commonly exhibit this type of error also. 

The significance of these pervasive displacement errors has been all but ignored in 

surface reconstruction and discontinuity detection algorithms. A possible explanation 

as to why these errors have been overlooked is that most researchers in discontinuity 

detection are also interested in edge detection (e.g. Reference [5]). Edge detection 

is the process of finding discontinuities in intensity. However, because of the optics 

of image formation, intensity data is not plagued by displacement errors and as the 

previous description of displacement errors so clearly illustrate, the input noise in 
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edge and discontinuity detection must be considered fundamentally different 

A simple question remains: how should a discontinuity detector (or surface recon-

struction algorithm) handle these displacement errors? Based on the surface property 

data only, a discontinuity detector must mark discontinuities as displaced from their 

actual location. Yet, clearly this results in an error in the detected discontinuities 

and in the reconstructed surface. In fact, the surface property data alone leaves no 

signature to distinguish displacement errors. An additional source of information is 

required and hence integration of visual information must be performed. 

3 Constrained Kernel Formulation 

In this formulation, we intend to show that discontinuity detection requires a two 

stage process: first, smoothing to eliminate the displacement errors but while also 

preserving discontinuities and second, detecting discontinuities. The second stage 

is simply Canny's non-maximum suppression and hysteresis[4] applied to maxima 

in the gradient magnitude. Our interest here is in the smoothing stage in which 

the postulated discontinuities lead to locally variable kernels that can eliminate the 

displacement errors. These locally variable kernels are a consequence of solving the 

diffusion equation with local, static boundary conditions. 

It is well known that solution to the heat equation, 

がJ(x,t) 8f(x, t) 

8丑 at

with diffusivity c(x) = 1 for a temporal impulse at t = 0 is[12]: 

00 
J(x,t)= j (1r4t)―礼ー(x-y)2/4t『(y)dy 

-oo 
(5) 

where J0(x)三 J(x,o+). If at x = x'we impose mirror boundary conditions, J(x, t) = 

J(2x'-x, t), and seek the response at 4t = 2庄 forx > x'then 

｀
 

応 Ix')=j00 [g(J(y -(2x'-x)) + g(J(y -x)] J0(y) dy 
x' 

(6) 

where x'is the position of the boundary and g(f(x) is a Gaussian distribution with 
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Figure 4: Three one-dimensional kernels (び=20 pixels) from Equation 7 for a 
postulated discontinuity at x'= 50 and impulses at 50, 75, and 150 pixels. 

standard deviation a. Because of the mirror boundary condition at x', this equation 

is seen simply as the response without boundary conditions to two impulses; one at 

x = 0 and its mirror impulse at x = 2x'. For a spatial impulse J0(y) = 8(y) the 

Green's function is: 

Gq(xlが)=g土）十gq(2x'-x). (7) 

This Green's function is a constrained kernel for an impulse at x = 0 and a mirror 

boundary at x = x'. For several impulse locations and for a fixedび， constrained

kernels are illustrated in Figure 4. 

The constrained kernels are themselves symmetric about the postulated disconti-

nuity. Consequently if, over the spatial extent of the kernel, the input is symmetric 

about the postulated discontinuity, then the response will also be symmetric. For 

example, if a surface is locally constant about a postulated discontinuity, subsequent 

to smoothing, no discontinuity will be introduced. Such a situation arises when a dis-

continuity is incorrectly postulated; this is common and desired because postulated 

discontinuities, to be effective, should be a superset of the actual discontinuities. 

When intensity edges serve to postulate discontinuities, surface markings or texture 

will introduce extraneous postulates. However, these extraneous postulates will not 

introduce incorrect discontinuities because the response of Equation 6 is symmetric 

near the postulated discontinuity. 

Subsequent to smoothing with the constrained kernels, discontinuities are identi-
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Figure 5: The response from Equation 6 is shown for different values of W/ a. The 
corrupted input is a unit step located at x'+ W = 74 but the actual discontinuity is 

at x'= 64. A postulated discontinuity is assumed at x'. As a increases (W/ o-→ 0), 
the discontinuity is shifted to x'and thus the displacement error is eliminated. Also, 
for large values of a and for x > x', the surface smoothly decreases. Later, when 

applied to real images, this smooth decrease in the response for x'< x < x'+ W 
will highlight the pervasiveness of displacement errors and the success of constrained 

kernels in eliminating the errors. The lower plot illustrates the derivative of the 

response. When W/a > 2 the derivative is peaked strongly at x'+ W; yet, increasing 
び suppressingthis peak and shifts the response to x'. Note that the two plots have a 

different scale for the x axis. 

fied as peaks in the gradient magnitude. Following Ganny's hysteresis scheme: weak 

peaks are discarded, strong peaks are retained, and other peaks are retained if they 

belong to a contour containing a strong peak. Small discontinuities at a postulated 

discontinuity, whether due to noise or an actual discontinuity, remain and can be 

discarded based on a selected noise threshold. 
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We are still faced with the problem of eliminating displacement errors. Consider 

the disparity d(x) of Equation 4 as the corrupted input for an actual surface given 

in Equation 3 as d*(x). The disparity d(x) shows no discontinuity at x'; it has 

been displaced to x'+ W. If we smooth d(x) with the constrained kernels based on 

Equation 6, the response is: 

信，Od}(xlx')= Od {『加(y+ (x -x')) + 91 (y -{ x -x'))] dy 

1 

for x > x' 

for x < x' 
(8) 

A family of these responses are illustrated in Figure 5 for several values of W /び.For 

small amounts of smoothing (W/び >2) the response remains large near x'+ W. For 

this smallび theconstrained kernel is essentially Gaussian at x'+ W. The postulated 

discontinuity does not contribute significantly to the response at x'+ W and therefore 

in this case our detector fails, as do other discontinuity detectors, by marking a 

discontinuity incorrectly near x'+ W. If, however, び isincreased (W /びく 2)so 

that the postulated discontinuities play are role near x'+ W; the constrained kernels 

deviate from a Gaussian and the discontinuity shifts from x'+ W back to x'. Figure 5 

shows this effect very clearly as a function of decreasing W /び．

This discontinuity that is introduced at x = x'can be detected if it is above 

the noise threshold. The detectability places a restriction on W /び.De且ne8dmax 

as the largest disparity difference at a displacement error and 8d両 nas the smallest 

disparity difference required to mark a discontinuity. (Typically, 8d面 n~ 1, 2 pixels 

and 8dmax is the full range of the disparity; maybe 20, 25 pixels.) Also, define 8dth 

as the disparity difference above which a discontinuity should be marked. To ensure 

that a discontinuity at x'is marked and that the displacement error at x'+Wis not 

marked, we have two conditions: 

11{8dmaェ}(x'+ w + clx') -f{ 8dmaェ}(x'+ W -clx')I < 8dth 

(9) 

加lmin}に'+EJx') -f{8dmin}(x'-Elx')I > 8dth 

where E→ 0 and the dependence of J() on W / CJ has been suppressed for display 

simplicity. The first equation states that after smoothing with the constrained kernel 
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even the largest displacement error of 8dmax should not produce a disparity diザerence

over the threshold. The second equation states that the discontinuity difference at 

x = x'should be over the threshold so that the discontinuity is correctly marked 

at x'. Consideration of these equations and examination of Figure 5 indicate that 

increasing O" ensures that the above two conditions are met. 

Discontinuities tend to be marked as a subset of the postulated discontinuities 

because of the shift induced by the constrained kernels. Another approach is to 

explicitly restrict the discontinuities to a subset of the postulated discontinuities; 

then the first equation in Equations 9 need not be satisfied and the condition onび is

not as strict. With sufficient smoothing to shift displacement errors both approaches 

perform well. The results in Section 5 uses the first approach where discontinuities 

could be marked anywhere. 

4 Relation to other Discontinuity Detectors 

Although our approach is related to several other approaches such as: anisotropic 

di:ffusion[13], adaptive windows[14], graduated non-convexity[15], computational mol-

ecules[16], and analog VLSI[l 7]; the use of postulated discontinuities is unique and, 

as Sections 2 and 3 have detailed, is mandated by the non-spatially white noise that 

pervades surface property data. These other approaches detect discontinuities ad-

mirably when applied to intensity images, range data, or synthetically created, white 

noise corrupted'test'images because these applications do not exhibit displacement 

errors. As Figure 5 and the associated discussion illustrates, unless postulated dis-

continuities are used, these discontinuity detector will fail by marking discontinuities 

at the displaced position x'+ W rather than at the actual location x'. 

Some early discontinuity detectors used postulated discontinuities for prior in— 

formation[6, 7]. These early detectors were based on Markov random fields (Mrfs) 

and in hindsight suffered from needless complexity. In particular, Mrf formulations 

are computationally demanding and consequently numerous techniques have arisen 

to circumvent the computational aspects[18, 19]. In addition, Mrfs require specifica-

tion of numerous parameters to impose smoothness and continuity on the solution. 

Specification of these parameters is difficult (e.g. Reference [20]). When postulated 
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discontinuities are used, smoothness of discontinuities arises naturally and the com-

putational demands are nearly identical to those of repeated binomial convolution (as 

described in the next section). 

Also, most other approaches seek simultaneously to compute the discontinuities 

and to reconstruct the surface property. One example is anisotropic diffusion where 

c(x) can vary as the diffusion proceeds. The smoothed surface property data alone is 

used to compute c(x); a large gradient in the surface property produces a small value 

for c(x) thereby inhibiting diffusion (i.e. smoothing). Figure 5 showed that if c(x) is 

allowed to vary then an early commitment to a discontinuity is possible and is likely 

to occur at its displaced position x'+ W. As shown very clearly within the context 

of scale space for adaptive windows[14], once committed, the reconstructed surface 

will remain in error. Smoothing must be performed prior to discontinuity detection 

to allow the displacement errors to shift. This is the approach advocated here; the 

sequential process of smoothing with constrained kernels followed by detection of the 

discontinuities. 

A related integration technique based on mean field theory[21] and a proposed 

technique to detect discontinuities in analog VLSI hardware[l 7] can be easily extended 

to compensate for displacement errors. Both techniques include concepts related to 

postulated discontinuities however, both simultaneously smooth the surface property 

and detect the discontinuities. If the postulated discontinuities are used as the initial 

state for the line process[22] and then then line process is held fixed while the surface 

is smoothed, the discontinuity can shift to its correct location at x'. 

5 Discontinuity Detection Results 

Discontinuity detection based on the constrained kernels from postulated disconti-

nuities is highly efficient. This section briefly describes implementation of the con-

strained kernels and the extension to two-dimensions. Results for discontinuity de-

tection from stereo disparity and optical-flow magnitude are presented as well. 

The response at each pixel in the image is based on convolution with a unique 

kernel, the constrained kernel. Convolution with these locally variable constrained 

kernels would be computationally impractical were it not for binomial convolution. 

13 
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Figure 6: Binomial masks for various positions relative to a postulated discontinuity, 
shown with a filled circle, are illustrated. Smoothing between the postulated disconti-
nuity and one of its neighbors is inhibited. The binomial masks in this case are given 
as (1, 3, 0) and (0, 3, 1). Away from the postulated discontinuity the mask is (1, 2, 1). 
All masks are subsequently normalized to 1. 

Repeated convolution with the binomial mask of Figure 6 produces an approximation 

to a Gaussian convolution withび＝乳了二万戸whereN is the number of binomial 

iterations. Mirror boundary conditions are imposed by modifying the binomial mask 

near a postulated discontinuity. 

kernels on stereo disparity data. 

As Figure 6 illustrates, 

ment errors as described in Equation 9. 

when one neighbor is a 

postulated discontinuity smoothing with that neighbor is inhibited. These masks can 

all be computed locally and are thus amenable to parallel computation. Our results 

were obtained with a 16k CM-2 Connection Machine[23]. 

The extension to two-dimensions is implemented by sequential application of bi-

nomial convolution along each of the two axes to build up the constrained kernels. 

Examples of 2D constrained kernels are shown in Figure 7. For these kernels and the 

subsequent resultsび =20 pixels. This largeび ismandated by the nature of displace-

The window size used for both the stereo 

and optical—恥w algorithms is typically between 16 and 32 pixels and the magnitude 

of the disparity difference is on the order of 20 pixels. 

Figure 8 shows two examples of discontinuity detection using the constrained 

The feature-based stereo algorithm[24] produces 

disparities ranging from O to 22 pixels. The patch size for the stereo correspondence 

was 16 x 16 pixels. The sparse disparities were converted to a dense field with simple 

region growing; this is labeled in Figure 8 (and 9) as "Filled Surface." The postulated 

discontinuities were based on intensity edges computed with Canny's edge detector. 

The right side of Figure 8 shows the results from our detector. The discontinuities 

•• 

｀
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言

＂ 
Figure 7: Contour plots of two-dimensional kernels generated with binomial convo-

lution from an impulse at (128,128) withび=20. Clockwise from the upper left, the 
postulated discontinuities are: none, line at x = 127, line at x = 85, two lines at 
x = 75 and y = 75. Each plot is scaled differently; all kernels are normalized to 1. 

are located accurately relative to the actual object boundaries (as observed visually). 

The smoothed disparity is also shown. Note that near the discontinuities the surface 

slowly decays away. This decay was described in Figure 5 and it clearly identifies 

those regions in the image plagued by displacement errors. As the figures illustrate, 

nearly all the discontinuities were computed accurately in spite of these errors. 

Figure 9 shows similar results based on optical-flow[ll]. The surface shown is 

the magnitude of the optical-flow. The discontinuities correspond to the boundaries 

between objects with different motions. The texture in regions of uniform motion 

have been eliminated. Once. again the decay attests to the pervasiveness of the dis-

placement errors and to the validity of our detection technique. 

It is clear that the large value of CJ needed to compensate for the displacement 

errors will oversmooth in regions far from the discontinuity. Local variation in CJ is 

possible although our results have not exploited this option. A uniform CJ has not 
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Figure 8: Depth discontinuities from stereo. Inputs on left, outputs on right. See 
page 15. 
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detracted from our results both in discontinuity detection and surface reconstruction. 

6 Summary 

Discontinuity detection differs from edge detection because of the noise in the surface 

property data. As we have shown, the pervasive noise in surface property data occurs 

at precisely those locations we seek to detect: the discontinuities. These so called 

displacement errors can only be resolved if prior information regarding their location 

is known. We have introduced the notion of postulated discontinuities to provide this 

prior information and have described a smoothing technique, based on constrained 

kernels, to compensate for the displacement errors. 

The postulated discontinuities need not be intensity edges. In our work this has 

proved quite successful as the results in Section 5 illustrated. However, if other prior 

information more accurately identifies potenti~l discontinuities then clearly intensity 

edges could be supplanted. Our use of intensity edges to postulate discontinuity 

locations rests upon the fundamental assumption of passive vision system: changes 

in surface properties originate intensity variations. Clearly this assumption fails in 

certain well-documented cases; second order texture boundaries and isoluminant color 

boundaries are two such cases. Similarly, for laser range data it is irrelevant to speak of 

intensity variations. However, for vision processing in a general environment, intensity 

variations arise and without intensity variations, low-level vision algorithms like stereo 

and motion will themselves fail. Hence the fundamental importance of intensity edges 

in computational vision. 

Although our discontinuity detector was described in the context of surface re-

construction, the reliance on intensity edges suggests that the detector also could be 

characterized as a labeling or perceptual grouping algorithm. The detector associates 

the type of discontinuity (in the cases described herein: depth and motion, others are 

possible) with an intensity edge. These labels should facilitate higher-level processing 

such as feature grouping, segmentation, and recognition and the reduction in image 

clutter should improve the combinatorics of these higher-level algorithms. 
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