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Abstract 

Various properties of the cascade neural network as a computational 
model for motor control of a multi-joint arm are studied. The cascade 
neural-network model calculates the trajectory based on minimum-torque-
change criterion. If the weighting parameter of the smoothness criterion is 
fixed and the number of relaxation iterations is rather small, the cascade 
model cannot calculate the exact torque, and the hand does not reach the 
desired target using the feedforward control alone. Thus, one observes an 
error between the final position and the desired target location. By 
simulating target-directed arm movements using a fixed weighting parameter 
value and a limited iteration number, we found the cascade model reproduced 
the planning time-accuracy trade-off, and speed-accuracy trade-off of the arm 
movement, well known as Fitts's law. This work provides a candidate of 
possible neural mechanism which explains the stochastic variability of the 
time course of the feedforward motor command along with several invariant 
features of multi-joint arm trajectories such as roughly straight hand paths 
and bell shaped speed profiles. 

When one plans and controls a motion, what is executed by the brain? To plan and control a voluntary 
movement, the brain must determine a single trajectory from an infinite number of possible trajectories and 
activate muscles to realize the desired trajectory. How is this done? 
In case of a target directed voluntary arm movement, when a hand is moved to a target, the central nervous 
system must select one specific trajectory among an infinite number of possible trajectories that lead to the 
target position. Several researchers measured human arm movements and found some invariant features. 
One beautiful feature of human multi-joint arm movements is that hand paths between two points are 
roughly straight, and hand-speed profiles are bell-shaped (Kelso, Southard, & Goodman, 1979; Morasso, 1981; 
Abend, Bizzi, & Morasso, 1982; Atkeson & Hollerbach, 1985; Flash & Hogan, 1985; Uno, Kawato, & 
Suzuki, 1989). To account for such features, Flash and Hogan (1985) proposed that the trajectory followed by 
human subject arms tended to minimize the Cartesian jerk of the hand. This minimum jerk model reproduced 
the qualitative features and the quantitative details of the human hand trajectories between two targets which are 
located approximately in front of body. Uno, Kawato and Suzuki (1989) studied this model further by 
considering optimization of dynamical quantities, and proposed the minimum torque-change model. This model 
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is formulated by defining an objective function, a measure of performance for any possible movement: the 
square of the rate of change of torque integrated over the entire movement. That is, the objective function Cy is 
defined as follows: 

Cr= 1『t(d-ri5。i=l亙〕 dt 
where巧isthe torque generated by the i th actuator (muscle) out of n actuators, andゲisthe movement time. 
Uno et al. experimentally examined human arm movements. Trajectories and speed profiles of human arm 
movements were predicted quite well by the minimum torque-change criterion, in several behavioral situations 
including horizontal point-to-point movements, via-point movements, constrained movements in which a 
spring force acts on the hand, and vertical point-to-point movements. 
We proposed a cascade neural network model for trajectory formation based on the minimum torque-change 
criterion (Maeda, Kawato, Uno, Suzuki, 1989, Kawato, Maeda, Uno, Suzuki, 1990). In this paper, we further 
study various properties of the cascade neural network model as a computational model for motor control of a 
multi-joint arm. We implemented a computer simulation program of the cascade neural network model and 
examined its properties in trajectory formation. Neural network models which reproduce speed-accuracy tradeoff 
have been proposed based on internal or external feedback loops (Bullock and Grossberg, 1988; Hoff and Arbib, 
personal communication). We will show that the cascade neural network model can reproduce the above 
mentioned invariant features of multi-joint arm trajectories as well as the speed-accuracy tradeoff based on 
feedforward control. 

Cascade Neural Network Model 

Figure 1 shows the cascade neural network model for trajectory formation based on the minimum-torque-
change criterion (Maeda et al., 1989, Kawato et al., 1990). 
The basic schemes of information representation and algorithms are (i) spatial representation of time, (ii) 
learning of forward dynamics and kinematics model and (iii) relaxation computation based on the acquired model. 
The operation of the cascade neural network model is divided into learning and trajectory formation phases. 
In the learning phase, the network acquires a forward model of the multi-degrees-of-freedom controlled object 
while monitoring the actual trajectory as a teaching signal. In the trajectory formation phase, electrical coupling 
between neurons representing sequential motor commands is activated to guarantee the minimum torque-change 
criterion. The network changes its state autonomously by forward calculation through the cascade structure, and 
by error back-propagation based on the acquired model. 
As shown in Figure 1, the cascade model consists of many identical four-layer network units. The j th 
network unit corresponds to time j△ t. The network units are connected in a cascade formation. The 1st layer of 
the network unit represents the time course of the trajectory and the torque. The 3rd layer represents the 
trajectory change per unit of time. The 4th layer and the output line on the right side represent the estimated 
time course of the trajectory. In short, the three layer part of each network unit calculates the vector field of a 
dynamical system which describes a controlled object, and hence the cascade network provides a hardware 
implementation of Euler's method of numerical integration of differential equations. The number N of cascade 
units is related to movement time. The cascade model can generate trajectories of any movement time shorter 
than N△ t. 
In the trajectory formation pnase, electrical couplings between neurons representing torque in the 1st layer of 
the neighboring units are activated. The electrical couplings are designated as electrical resistance in Figure 1. 
The electrical conductance guarantees smoothness of the motor command, that is, a minimization of rate of 
change of torque. 
The central commands specify the desired target position, the desired via-points and the locations of obstacles 
to be avoided, and give this information to the 4th layer of the cascade network. These positions are represented 
in task-oriented coordinates such as Cartesian coordinates of the hand position. The hand trajectory is first 
estimated by the feed.forward calculation of the cascade network based on the current values of torque represented 
by the motor command neurons in the 1st layer. Then, errors between the desired target position or the desired 
via-points and the estimated trajectory are calculated at the output line on the right side of the cascade network. 
Next, these errors are backpropagated all through the cascade structure to motor command neurons in the 1st 
layer. Finally, the state of the motor command neurons is updated according to summation of two forces: A 
smoothing force due to electrical conductance, and an error correcting force due to backpropagation calculation. 
It can be shown mathematically that the cascade network executes the steepest descent motion with respect to 
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the following energy which consists of two terms. 

E=烏 +g尾＝烏+gl。芦匿〕2 dt 
where'I"k is the torque generated by the k th actuator (muscle) andげisthe movement time. ED corresponds 
to the hard constraint which requires that the hand reaches the target, and passes through the via-points. The 
smoothness energy Es is the objective function of the minimum torque-change model. The smoothness 

constraint is weighted by a positive value g, which corresponds to the electrical conductance of gap junctions in 
the cascade network. Relaxation is conducted by backpropagating the positional error of ED through the cascade 
structure. Mathematically, the forward calculation through the cascade structure corresponds to the forward 
integration of the dynamical system of the controlled object. Correspondingly, backpropagation through the 
cascade structure is related to backward integration of the adjoint equation of the dynamical system. The cascade 
network as a whole relaxes the energy by repetition of forward and backward calculations. The number of 
iterations for relaxation calculation corresponds to the planning time of the movement. 
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Figure 1. Cascade neural network model. 
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Simulation Method 

We implemented the cascade network simulation program and simulated trajectory formation of target directed 
arm movements with various durations of movement. Simulation configurations are described as follows. 

Arm Model 

A two-joint manipulator with two-degrees-of-freedom is used as a model of a human right arm. Figure 2 
shows the model and target locations used for the simulation. Physical parameters of the model manipulator 
were chosen based on experiment data and human arm geometry (see Uno et al., 1989). 
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Figure 2. Arm model and target locations. 

Arm Dynamics 

In the prev10us studies, we confirmed that the forward dynamics of the arm can be acquired in the cascade 
neural network model by the usual backpropagation learning algorithm (Maeda et al., 1989, Kawato et al., 
1990). In this paper, we are mainly interested in the trajectory formation capabilities of the model. Thus, we 
used an exact dynamics equation instead of a multi-layer feedforward network unit. The following equations are 
used for a two-joint manipulator within the plane. 

r1 = (M2½2 + 2M山ふCO連 +/1+I汎 +(M出呂cos02+ 12胤

-M2£iS2(訊 +0汎si訊 +B高

ち=(M2LiS2co連 +I汎＋砂+M出S附 si鴫 +B丸

T

,

-

Arm Kinematics 

The higher motor center in Figure 1 gives information about locations of the target point, via-points and 
obstacles to the cascade model in task-oriented coordinates; the Cartesian coordinate of the hand position in this 
case. Hence, the cascade network needs to solve the so called inverse kinematics problem to determine joint 
angles from the corresponding hand positions. There are two different ways to resolve this problem (see Kawato 
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et al., 1990). 
The first is to represent the combination of both the forward dynamics and forward kinematics using the 3-
layer network unit in Figure 1. That is, the dynamics of the arm are described by using both the joint angle and 
hand position variables. 
The second approach is to divide the forward dynamics model and the forward kinematics model. In this case, 
the cascade structure itself represents only forward dynamics. We separately prepare the forward kinematics 
model which calculates the hand position from the joint angles, and is attached to the output layer of each 
network unit. Thus, N identical forward kinematics model networks are necessary because there are N network 
units in the cascade model. We found that both of the above two schemes worked well (Maeda et al., 1989, 
Kawato et al., 1990). 
In this paper, we adopt the second scheme since it is more suitable to utilization of exact equations. Figure 
3 shows the simulation model of the cascade neural network model using F.D.M.(Forward Dynamics Model) 
and F.K.M.(Forward Kinematics Model). 
Hand position errors are frrst calculated at the output line of the forward kinematics model. These errors are 
then backpropagated through the forward kinematics model to calculate errors in joint angle space. This 
procedure calculates the joint angle error e1 as the product of the transpose of Jacobian of coordinate 

transformation JT and the hand position error ey (see for example Jordan, 1991): 

e 1 = Jr er 
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Figure 3. Cascade neural network model with F.D.M. (Forward Dynamics Model) 
and F.K.M. (Forward Kinematics Model). 

Trajectory Formation with Fixed Electrical Conductance 

The cascade network executes the steepest descent motion with respect to the weighted sum of the 
smoothness constraint and the hard constraint regarding target points. The value of the electrical conductance is 
the weight of the smoothness term. The electrical conductance must be slowly decreased to zero so that the hard 
constraint is strictly satisfied, well known as the "penalty method" in optimal control theory. 
In our previous simulation experiments, the electrical conductance was slowly decreased to zero (Maeda et al., 
1989, Kawato et al., 1990). However, this "simulated annealing" procedure requires a vast number of iterations, 
and is highly biologically implausible because the central nervous system must calculate the feedforward torque 
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within a few hundred milliseconds. We resolved this difficulty in the cascade model from three different 
viewpoints. The first two are efforts to reduce the required number of iterations. The third, the main topic of 
this paper, is to analyze the nature of the errors induced by the fixed electrical conductance and a small number of 
iterations. 
We first briefly illustrate the fi江sttwo approaches. Kitano, Kawato, Uno, Suzuki (1990) developed a novel 
method called the "virtual target point" to reduce the number of iterations even with a fixed and relatively large 
value of the electrical conductance. The virtual target point moves around to compensate for the effect of the 
fixed electrical conductance. We can mathematically show that this generates a rigorous minimum torque-
change trajectory. Kitano found that a quite good trajectory for a two-joint arm within a plane can be calculated 
with only 80 iterations (Kitano et al., 1990). The second approach is to use a good initial torque waveform for 
relaxation computation. In all simulations, we chose the zero initial torque waveform which is, of course, a 
poor choice. We can imagine an associative content addressable memory (ACAM) neural network which can 
store the equilibrium solution calculated by the cascade network, and can instantaneously load it on the cascade 
network as a good starting point for relaxation computation. One potential ACAM candidate is Jordan's 
recurrent network which can calculate a smooth trajectory in real time (Jordan, 1990). 
In this paper, however, we do not use either of the two improvements. Instead, we use a fixed electrical 
conductance and zero initial condition for the torque waveform. Thus, we can expect that the number of 
iterations reported in this paper could probably be reduced by one or two orders of magnitude if the two 
improvements were utilized. 

Time and Accuracy of Target-directed Movements 
Target-directed voluntary movements can be thought of as a series of processes, which are (1) inputs of 
visual information such as a start position, a target position and environmental situations, (2) planning of 
motor command according to some constraints, (3) activation of muscles by feeding the generated motor 
command. Consideration of the timing of each process is helpful in elucidating the motor control mechanism. 
Today, human motions were measured and analyzed by several researchers with these results sometimes being 
used to predict human performance in industry or to design user interfaces of machines. 
Fitts measured human subjects'movements and found a speed and accuracy trade-off. The relationship of 
speed and accuracy is expressed by the following equation known as Fitts'law (Fitts, 1954, Fitts & Peterson, 
1964). 

MT  =a+blogi(翌）
where MT is movement time, A is amplitude of movement, W is width of a target, a and b are constants 
which depend on behavioral situations. 
We simulated the cascade neural network for movements of various durations. This can be done by changing 
the number of network units to which the target position is given. 

r ＼ 

Result 

Trajectories 

Figure 4 shows results of computer simulations with the fixed electrical conductance of g =0.001 with fixed 
iteration number of 2500 for various arm movements with 0.7 second duration. We show hand paths, hand 
tangential velocities, which were realized and produced by the cascade neural network. Five point-to-point 
trajectories (Tl-T3, T2-T6, T3-T6, T4-T6, T4-Tl) were generated. The start and target points are the same as 
those of the human behavioral experiments studied by Uno et al. (1989). Trajectories and velocities produced by 
the cascade neural network were in accordance with the data of human movements, even though the conductance 
of the electrical synapse was fixed. 戸＂
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Figure 4. Trajectories produced by the cascade neural network model. 
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Planning Time-Accuracy Trade-off 
Figure 5 shows the final position error of the hand as a function of the iteration number of the relaxation for 
the movement T2-T6. A duration of the movement was either 0.5, 0.6, 0.7, 0.8, 0.9 or 1.0 second. The error 
to the desired target position is defined as the Euclidean distance between the desired target point and the end 
point of the trajectory which was calculated by the cascade neural network in 2500 iterations of relaxation. 
Because we used the exact model of the forward dynamics and forward kinematics in the cascade model, the 
estimated trajectory is almost identical to the realized trajectory of the manipulator controlled only by the 
feedforward torque calculated by the cascade network. Consequently, the error can be regarded as the actual 
position error at the end of movement. The error decreased with the number of iterations, that is, with the 
planning time of movement. This is because the iteration number for relaxation calculation can be regarded as 
the planning time. This result shows the planning time and accuracy trade-off. 
Furthermore, the error is larger for shorter duration. This suggests speed-accuracy trade-off. The final 
position error did not approach zero even with a large number of iterations because of the fixed electrical 
conductance. 
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Figure 5. Planning time-Accuracy trade-off of a target directed movements (T2-T6) in 
various movement time (0.5, 0.6, 0.7, 0.8, 0.9 and 1.0s), 
produced by the cascade neural network model. 

Speed-Accuracy Trade-off 
Six movement durations (0.5, 0.6, 0.7, 0.8, 0.9, 1.0 sec.) were examined for 10 different trajectories (Tl-T3, 
T2-T6, T3-T6, T4-Tl, T4-T6 and T2-T6, T2a-T6, T2b-T6, T2c-T6, T2d-T6). The initial and final target points 
are shown in Figure 2. Tl-T3, T2-T6, T3-T6, T4-Tl, T4-T6 are movements with different directions and 
different amplitudes. As can be seen in Figure 2, T2-T6, T2a-T6, T2b-T6, T2c-T6, T2d-T6 share the same 
direction, and the latter four movements are parts of the first full movement. The average time of human 
subject movements was approximately 0.7 second in our experiments for Tl-T3, T2-T6, T3-T6, T4-Tl and T4-
T6 trajectories (Uno et al., 1989). 
Figure 6 shows the final position error as a function of speed 1 /MT and as a function of amplitude of 
movement. The final position error is called the effective width We and can be regarded as the width of the target 
in a Fitts'type behavioral experiment. T2-T6, T2a-T6, T2b-T6, T2c-T6, T2d-T6 trajectories are used for this 
plot. This result shows that for the same amplitude of movement, the error is larger for the larger speed of 
movement (Figure 6a). For the same duration of movement, the error is larger for the larger amplitude of 
movement (Figure 6b). In addition, the relationship between the amplitude of movement and the error is almost 
linear for the same duration of movement. If Fitts'law holds, 2A I We is constant for the same MT. 
Simulation results shown in Figure 6 obey this rule. 
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2A 
The accuracy log2 (-) which was defined by Fitts was calculated for five different trajectories; Tl-T3, 

We 
T2-T6, T3-T6, T4-Tl, T4-T6. Figure 7 shows the movement time as a function of this accuracy. The result 
shows that movement time and accuracy trade-off is in accordance with the Fitts'law. That is, the cascade 
neural network model predicts speed-accuracy trade-off of human arm movements. 
One may notice that the straight lines for 5 different trajectories in Figure 7 are different although the 
movement time as a function of accuracy obeys Fitts'law. That is, constants a and b depend on movements. 
Table 1 shows the constants a and b calculated from this graph. This prediction that the speed at which a 
movement proceeds is based not only on the accuracy and distance requirements of the task but also on 
biomechanical factors, such as, the summation of interactional forces was recently confirmed by experimental 
data (Bassile & Kaminski, 1991). 
Our simulation held movement time constant at each of several values and then measured the variability of 
movement endpoint. In the classification of Meyer, Smith Kornblum, Abrams, and Wright (1990) this is a 
time-matching movement task. Movement made under this set of task constraints typically exhibit a linear 
speed-accuracy trade-off We= KJ + K2(A!MT) (see Wright and Meyer, 1983 for experimental support). Fitts' 
law, in contrast, is usually observed in situations that were classified in that paper as time-minimization 
movement task. In this class of movements the goal of the subject is to move as fast as possible given the 
constraints on the movement endpoint. Thus if this classification is applied also to multi-joint arm movement 
with relatively long movement durations, our simulation result should obey the linear speed-accuracy trade-off. 
The simulation data was approximately described by the linear law for a small range of velocity variation. 
However, for the total range simulated, the log law accounts better our simulation result than the linear law. 
If the linear law holds, we should see family of straight lines in Fig. 6a which plots effective target size as a 
function of speed, but the simulated curves have marked concavity. It might be interesting to observe similar 
concavity in the experimental data for the time matching task (for example Figure 1 of Zelaznik et al., 1988). 
We have recently proposed a new neural network model for minimum-torque-change trajectory (Kawato, 1992). 
It is interesting to examine whether the new model can reproduce linear speed-accuracy trade-off. Examination of 
single-degree-of-freedom controlled objects such as wrist or eye with the cascade neural-network model is also 
interesting. 

1.0~ 匹◇ I-

釦◇

0.8~ 如◇
.-、
_Cl) _ , 

心¢

晋0.6j 匹◇
i-= 
モ 匹◇ . Trajectory 
Q) 

E 0 T1-T3 
a., 6 0.4 

口T2-T6
~ 

△ T3-T6 
0.2」

◇ T4-T1 I-

+ T4-T6 

0.0 

゜
2 4 6 8 10 

log 2(2A/We) 

Figure 7. Speed-Accuracy tradeoff produced by the cascade neural network model. 

-10-

v',4 

、書

が



Table 1. Constants a and b for the Fitts'law equation 

Trajectory a (ms) b (ms) 

Tl -T3 -125 113 
T2-T6 -91 111 
T3 -T6 -61 110 
T4-Tl -124 106 
T4-T6 -34 109 

Discussion 

The classical explanation of Fitts'law invokes feedback corrections at long intervals (see, for example, 
Keele, 1986). We think this explanation fails if one considers a relatively long feedback delay. The loop time, 
which includes sensory processing by photoreceptors in the retina, planning and motor-command generation, and 
activation of muscles, may exceed 100 msec (Evarts, 1974). If one has experience with conventional real-time 
feedback control (for example using usual PID controllers), it is evident that control of a 700-msec movement 
with 100-msec feedback delay is very difficult. However, it must be noted that a feedback control with 100-msec 
delay could contribute fine in slow movements or in posture control. Bizzi et al. (1984) reported data which 
supports that a desired movement trajectory is explicitly planned in the brain and then feedforward control 
executes it. In their experiments, when the forearm of a deafferented monkey or an intact monkey was quickly 
forced to a final target position early in a movement, the arm returned to some intermediate point between the 
initial and final positions, then gradually approached the final target position again. . 
Even an elegant and comprehensive theory, the "stochastic optimized-submovement model" proposed by 
Meyer et al.(1990), relies on a feedback signal for starting a secondary corrective submovement in order to hit a 
target. If one assumes that the error s~gnal for corrective submovements requires detecting the final position of 
the fi江stsubmovement, there must exist at least 50 msec dead time due to somatosensory feedback before the 
second submovement. This is not the case because the typical oscillation of movement velocity and 
acceleration around the end of the frrst ballistic movement is continuous (Meyer, Abrams, Kornblum, Wright 
and Smith, 1988). Thus, Meyer et al. (1988) assumed that feedback and feedforward (efference copy) are 
processed "on the fly" during movement production. 
In our opinion, the submovements reported by Meyer et al. (1990) instead might be interpreted as physical 
oscillation caused by visco-elastic properties of the musculoskeletal system. It might be hypothesized that the 
initial ballistic part of a movement is controlled by a strictly feedforward mechanism like the cascade neural 
network, whereas the later part of the movement is executed by a posture controller that specifies levels of 
stationary motor commands for groups of muscles based on visual information about target location. 
Presumably, the use of visual feedback is stationary. If the final position of a hand realized by the feedforward 
control coincides with the stationary posture commanded by the feedback mechanism (posture controller), there 
happens no oscillation. However, when these two positions are different, then damped oscillation which 
converges to the specified posture should be observed because of the spring-like dynamics of the 
musculoskeletal system in combination with the posture controller. Thus, this mechanism explains why and 
how this "passive" oscillation made the movements more accurate when there was visual feedback. 
Furthermore, when concurrent visual feedback of the current position is removed, the posture controller suffers 
from inaccurate coordinate transformation between the target visual location and necessary motor commands 
because of loss of the reference. Then, under this condition, our model predicts inaccurate final positioning and 
decrease of stiffness of the final posture (see Meyer et al., 1988 for related experimental results). We proposed 
one candidate for this posture controller: the inverse-statics model (Katayama & Kawato, 1991). 
Nevertheless, we agree the view that variability in motor-output processes mediates errors in rapid 
movements, which is the basic assumption of the stochastic optimized-submovement model (Meyer et al., 
1990). This viewpoint was originally proposed in an impulse-variability model, and validated by behavioral 
experiments on controlling ballistic force pulses (Schmidt, Sherwood, Zelaznik, & Leikind, 1985). Our own 
subsequent work provides one possible neural mechanism that explains the stochastic variability in the time 
course of feedforward motor commands. From simulations reported in this paper and by Uno and Suzuki 
(1990), we infer that the calculated feedforward torque contains stochastic variability associated with variability 
in the number of iterations during relaxation computation, and with variability in electrical resistance values, or 
with variability in the learned forward model (Uno & Suzuki, 1990). Furthermore, the cascade neural-network 
model explains this variability for movements involving multiple degrees of freedom and a controlled object 
with realistic dynamics. These dynamics contain centripetal and Coriolis forces and frictional forces. The 
presence of such realistic forces violates basic assumptions of Meyer, Smith, & Wright (1982) about force-time 
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rescalability and symmetry. 
Results shown in Figure 7 tempted us to invoke a totally feedforward mechanism which gives Fitts's law. 
However, we do not intend to totally deny the role of the feedback loop in movement. We are concerned about 
the concavity of the Fitts's law functions in Figure 7. If some visual feedback is utilized for the long 
movements, it might be enough to pull the concavity down. We hypothesize that the initial ballistic part of the 
movement is controlled_ by an entirely feedforward mechanism like the cascade neural network, and the later 
oscillatory part is expl狙nedby spring-like properties of the musculoskeletal system combined with a posture 
controller which specifies levels of stationary motor commands for groups of muscles based on the sensory 
feedback information about the target location. However, we emphasize that the use of feedback information is 
stationary such as by the inverse statics model. 
In summary, the movement speed-accuracy trade-off may be explained by difficulty in feedforward neural 
calculation of ballistic motor commands for a controlled object with multiple degrees-of-freedom. Our present 
study is less refined in several ways (especially treatment of "time-matching" versus "time-minimizing") 
compared with some others (for example, the elegant and comprehensive model proposed by Meyer et al., 1990). 
Nevertheless, for the frrst time, we have tried to explain motor-command variability based on a specific, neural 
model of motor-command generation. Furthermore, our model extends previous theories about movements with 
a single degree of freedom and oversimplified dynamics to coordinated movements with realistic dynamics. 
Perhaps the strongest virtue of the cascade neural-network model is that it can reproduce both quantitative 
features of multi-joint movements and motor-command variability. 
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