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Random Closed Sets: 
theory and applications 

Philippe Quini~ 
A TR Auditory and Visual Perception Research Lab. 

This report contains all the materials (slides, 
pictures) presented at a series of talks on the RAGS 
theory, held at ATR Auditory and Visual Perception 
Research Laboratories in November 1991. 

What is a Random Closed Set? 
確率閉集合とは？

II. Links with other theories of Uncertainty 
従来のあいまいさ理論との関係

Ill. Im lementational issues and applications 
実情にあたっての問題点



I. What is a Random Closed Set? 
確率閉集合とは？

1 . review of basic topology (位相幾何学）
1 .1 topological spaces (位相空間）
1 .2 open and closed sets (開集合、閉集合）
1 .3 continuity, semi-continuity 
（連続写像、半連続変数）
1 .4 compact sets (コンパクト集合）

2. review of basic probability measure theory 
（確率測度論）
2.1 a-algebras, events . (加法族、事象）

2.2 measures, probability measures 
（測度、確率測度）
2.3 measurable mappings, random variables 
（可測写像、確率変数）
2.4 Borel a-algebras generated by a topology 

（ボレル加法族）

3. Random Closed Sets (確率閉集合）
3.1 Hit or Miss topology (Hit/Miss位相）
3.2 formal definition (定義）
3.3 Choquet's theorem (Choquetの定理）
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XIII. RANDOM CLOSED SETS 483 

Figure XIII.2. Two examples of phenomena suitably modelled ?Y Boolean sets. (a) (above) ferrite 
crystals in an iron sinter, (b) (below) portion of the forest of Fontainebleau. (See also 
micrographs of clay Figure V.31 (x 3.000) and oogoniae Figure IX-13(a), which are both 
Boolean. In the second example, the primary grain is made of two disjoint cells.) 
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I. What is a Random Closed Set? 
確率閉集合とは？

Random Closed Set 

， 
"Random Variable" I "Open/Closed" l 戸lement/Set"

probability 
［ 
topology l ［ set theory l theory 



1. Review of topology 

A topological space is a pair (U, Q), where U is _a set ("universe") 

and n is a set of subsets of U that verifies: 
i) 0EQ, 

ii) if 01 El2 and 02 El2, then 01 n02 El2 

(i.e. n is stable for finite intersection) 
iii) if 0入En,then u o,t En 

入eA

(i.e. n is stable for union) 

UEO 

Elements of n are called open subsets of U , 
their complements in U closed subsets of U. 

-
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Examples .of topological spaces 

1) Discrete topology 

(U,P(U)) is a topological space for any set U. 

⇒ every subset is both open and closed! 

2) Trivial topology 

(U,{0,U}) is a topological space for any set U. 
⇒ only 0 and U are open (and closed)! 

3) Metric topology 

if (U,8) is a metric space (distance 8), (U,n) where n is generated 

by the open balls is a topological space. 

8(0,p) = { x EU, 8(x,0) <p} open ball of center O and radius p 

4) Euclidean topology (町，8)

= metric topology in町 with8 the euclidean distance: 

n 2 

8(X(X1, …，Xn),y(yi, …, Y n)) = ,{L (X; ―Y;) 
i=l 



Continuity of a mapping 

f: (Ul'Ql)日 (Uz,叩

X→y 
mapping from topological space (Ui,01) 

to topological space (U 2, n』

f is continuous iff the inverse image of every open set of U 2 is open in U1: 

't/02 E Q2 ,f―l(Q2)EQ1 

A

f

?
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f is continuous iff the inverse image of every closed set of U 
2 is dosed in U : 1 

VF2 E屯，fー1(F2) E屯



continuity, discontinuity 

f
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Semi-continuity of a function 

f:(U,n)曰（沢，no)

X→y 
function from topological space (U, Q) 

to metric topological space (汎no)

f is upper semi -continuous iff the inverse image of every closed set [x, +oo[ of沢

is closed in U: Vx E沢，fー1([X,+oo[) E① 

f . 1s lower semi -continuous iff the inverse image of every closed set ] -oo, x] of沢

is closed in U: VXE沢，fー1(]-oo,X])E<l>

closed 
R 

x
 ， , 
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Compact sets 

A subset K of a topological space (U, Q) is compact iff from any covering of K by 

opens, we can extract a finite subcovering. 

compact set 

,nm,9 
covering by an 
infinite number 
of open balls 

finite subcovering 

⇒ Compact sets are always closed. 

In metric spaces, compact sets = bounded closed sets 



2. Review of probability measure theory 

A a-algebra (a-field) L of U is a set of subsets of U stable 

for countable unions and complementation: 

i) VA E L,Ac EL 

ヽ
ー
）．
 
．
 
訊，…，A;,... EL, 且AiEL 

The elements of a CJ-algebra are called events. 

(Uぶ） is called a measurable space. 

A functionµ:I:~ → 9¥ is a measure iff: 
i) VAEI:,O 幻 µ(A)~oo

ii)μ(0) = 0 

iii) VA; EI: (for i = 1,2, …），Ai n A. = 0 wheneveri *・ J, 

thenμ 位A,)=翫(A,)

(Uぶμ)is called a measure space. 

If μ(U) == 1 thenμ1s called a probability measure and 

(Uぶμ)a probability space. 

-_＇ 



Measurable mappings 
Random variables 

f:(Ulぶ）曰(Uzふ） mapping from a measurable space into 

another is said measurableiff the inverse image fー1(A2) 

of every event A2 in U2 is an event in U1: VA2 E 1:2 ,fー1(A2) E Ll. 

A measurable mapping f:(U1ぶ，Pr)曰 (Uzふ） from a probability 

space into a measurable space is called a random variable. 

f induces a probability measure Pin (U2ぶ）：

p (A2) = Pr (,-! (A2)) = Pr ({ X E ul , f (X) E A2 }) 

noted Pr(f (x) E A2) or even Pr(f E A2) 



Example of random variable 

Let f: (U,L,Pr)曰（沢，ら） be a real -valued random variable. 

ら isgenerated by the open intervals (balls): ]a, b[ 

P(]a,b[) = Pr(t―1 (]a,b[)) = Pr({ x E U,f (x) E]a,b[}) 

= Pr({XE u'a< f (X) < b}) 

noted Pr(a < f < b) 



Topological a-algebras and measures 

If (U,n) is a topological space, the smallest CJ-algebra L 

containing all the open sets (Lコn)is called the 

Borel CJ-algebra of (U,n) and measures defined on L 

are called Borel measures. 

L contains all the open sets, all the closed sets and all countable 

intersections and unions of open and closed sets. 



3. Random Closed Sets 

3.1 Hit or Miss topology 

Let (U, Q) be a topological space. 

We want to build a topological structure on the set・<l> of the closed subsets of U. 

Consider the sets 

0~={FE <I>,FhitsO,F missesK} ={FE <I>,F n 0-:f. 0,F n K = 0} 

for all opens O and all compacts Kin U. 

The topology generated by all 0訂scalled the Hit or Miss topology. 

3.2 definition of Random Closed Sets 

A Random Closed Set (RACS) is a random variable valued in the measurable 

space (<I>, 恥）， where:E0 is the Borel a -algebra of (<I>, 0). 

X:(U。ぶ。，Pr)曰 (<I>,:Ee,P)

P(A) = Pr(X EA) for A event in恥

Since :E0 is generated by oi, it is sufficient to work with the oi: 

f!(Oi) = Pr(X E oi) = Pr(XhitsO and X missesK) 



庄 Hitor Miss topology (F1 and凡 belongto the sa1ne neighborhood 0~1 n 0~2 n 0~3 n 0'1く）



Choquet's theorem 

A RAGS Xis entirely determined by its hitting functional Tx defined on the 

compacts of U: Tx (K) = Pr(X hitsK) = Pr(X n K-::/:-0). 

Conversely, a functional T defines a unique RAGS X iff: 

i) T(K)幻

ii) T(0) = 0 

iii) T(Kn)↓ T(K) whenever K ↓ K( sequential continuity) 

iv) ¥ln>O,¥l(K。,K,, …，K,),T(K。)<にit'tl)l'l"T(K。叫K,)

Txi is an alternating Choquet capacity of infinite order, called hitting capacity of X. 

RACS in finite spaces 

Finite sets can be made topological spaces: discrete topology 

=> all subsets are open, clos.ed and compact 

=> Random Closed Sets are simply called random sets. 



Summary of part I 

A Random Closed Set is simply a random variable valued 

in a set of subsets, instead of a set of points. 

These subsets are closed in a topological sense. 

A RACS is entirely determined by knowing the probability that 

it hits some given compacts. 

These compacts are structuring elements that we use 

to probe our random set. 



II. Links with other theories of Uncertainty 
従来のあいまいさ理論との関係

1. a semantics for Random Closed Sets 

1.1 the knowledge acquisition problem: 

Imprecision vs. Uncertainty 

1.2 random sets 

1.3 experimental accessibility and topology 

1.4 Random Closed Sets 

2. link with the Dempster-Shafer theory 

2.1 Belief and Plausibility functions 

2.2 relation to hitting and inclusion capacities 

2.3 summary of the links 

2.4 extensions of the Dempster-Shafer theory 

based on RAGS 

3. link with the Fuzzy set theory 

3.1 Fuzzy set membership functions 

3.2 Fuzzy connectives 



Knowledge Acquisition 

Sensor imprecision 

Sensingこ
Possibility of error 

Knowledge Space 

The acquired knowledge is inherently imprecise 

and possibly erroneous, hence uncertain 
-＝-＝

-
i・I-――

-9
Explicit representation of 

both imprecision and uncertainty is required 
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Experimental accessibility and topology 

- In uncountably infinite spaces, experimental accessibility 

implies a notion of topology ("neighborhood", "continuity"…) 

R
 

closed 

-—---—-—-—-—-—-—-—--+-—-—-—-—-—•—-—-—-~ —-—-—-—-—-—-—-—--

゜ closed u
 



Random Closed Sets 
(RACS) 

Set theory 

Topology 

Choquet's theorem: 

A random closed set Xis entirely determined by its hitting 

(Choquet) capacity: 

Tx(K) = Pr(XhitsK) 



Relation to the Dempster-Shafer theory 
(in a finite space) 

Belief function Bel: 

Bel: P(U)曰 [O,1] 

A→ Bel(A) 

(i) Bel(0) = 0 

(ii) Bel(U) = 1 

(iii) Be{ LJA;)~}:, (-1)11" Bei(nA,) for every finite family Al'…, A, 
i=l, ... ,n /c(l, ... ,n} ie/ 

/,o0 

Plausibility function Pl: 

Pl: P(U)曰 [O,1] 

A→ Pl(A) 

(i) Pl(0) = 0 

(ii) Pl (U) = 1 

(iii) Pi(n A;) :,; I, (-1)"1" Pl(LJ A;) for every finite tam i ly A, , …，A, 
i=l, ... ,n /c(l, ... ,n} ie/ 

1 .. 〇

Belief interval of A: 

[Bel(A),Pl(A)J = [Bel(A),1-Bel(Ac)J = [1-Pl(Ac),Pl(A)J c [0,1] 

Ignorance with respect to A: PI(A)-Bel(A) 



Relation to the Dempster-Shafer theory 
(in a finite space) 

U: finite set --> topological space with discrete topology 

--> "discrete topological space" 

三［詈三三~/;:三三j
., ・・・-・-・-・・・・・・・・・・・・・・・・・—·.·.•.•,•,•························ ふ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ヽ·.•.•,•・•.•.•,•.•,•,•,•······························································································ふ・・・・・・・・・・・ハ·ふ•ふ•.•.·········—······· ふ•••••·••••••••••••••••••w·•·•·•·•·•・•,•.•··········································ふ•ふ·ふ•ふ·—•••ー•.•.•.•ふ•.•.•.•.•-·-·-·—.. ・・ぶ.,,i!If

貴
The Plausibility functions Pl defined on a (finite) 青

universe U are exactly the hitting capacities of the illll 

almost surely non-empty Random (Closed) Sets X of the !!I 

discrete topological space U. 後

, 
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Relation to the Dempster-Shafer theory 
(in a finite space) 

Dempster-Shafer 

Pl(K) 

Plausibility function • • 

Bel(K) 

Belief function • • ． 
q(K) 

Communality function 

m(K) ~ 
Mass function 鴫• l• 

[Bel⑨B叫(K)=五（ぶ,(B)・m,(c))
Unnormalized Dempster's rule • ~ 

こ正(B)•m2(C)

[Bel, ⑤B叫(K)="『:(予:,(B)・m,{C)J 
BnC=0 

Normalized Dempster's rule 一

RACS 

Tx(K) = Pr(XhitsK) 

Hitting capacity of a.s. 

non-empty RACS 

Px(K) = Pr(X c K) 

Inclusion capacity of a.s. 

non-empty RACS 

Rx(K) = Pr(K c X) 

Implying functional of a.s. 

non-empty RACS 

Pr(X =K) 

Probability density with respect 

to the counting measure 

T知 x,(K)=,t(ぶ~(X1= B; X 2 = C)) 
Intersection of independent a.s. 

non-empty RACS 

TふEBX2(K) = 
麟認{X1=B;X,=C)) 
1一IPr(X1= B;X2 = C) 
BnC=0 

Conditional intersection of 

independent a.s. non-empty RACS 

given that they are not disjoint 
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Extensions of the Dempster-Shafer theory 

1) Open World assumption (Smets 1988, Matsuyama 1989) 

=> drop the "almost surely non-empty" requirement 

Theory of statistically independent Random Closed Ill 

Setsinf inite :Cご；;~ti:~ 誓誓竺ctionas the J 
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・--・・・・・・・・・・・・・・・・・・・・・・ ょ·••···••••••·•·····•·······•·••••••••••••w.·.·.w.•.••••••·••·••ヽ-------------.-----.w---------------------------•-------'"-'"'""-----、-----.------------ヽ·------·----------.-------------------------------.-----.--•---·-·-·--------------.·------------.---へ·-------------·--------.---.---.---.----·-·------.-----.-.-.------·-------•.-..... -.-.---------------.-ぶ_,,it

2) extension to infinite spaces 

=> Random Closed Sets are defined in general compact 

metrizable topological spaces (Matheron 1975) 

Theory of statistically independent Random Closed 

3) Dem ster's rule with non-inde endent ieces of evidence 

T応 xJK)=A旦翌凶=B;X2心）〕



Relation to the Fuzzy set theory 

fuzzy set membership functions 

fuzzy sets 

cross-section ． 
• 
point coverage 

Random sets 
(Goodman 1982) 

~~m;~ 詈団｝ば゜~.~ 三三=e・・・・・・・・・・~.ando.m. ~.lo~ed. :ets •• J 
｀心ぷ❖.•:-:-.-ぶヤぷ•ふぷ•:•:•:-:-:-:•:•.·ぃ•ふ.. ❖ •••••••• ふ•••••ぷ.... -.-.-.-ぷ·—-:-:-:•.·---•:,.•.:奴-:-:-:ぶぶ.,.:::母.,::ふX・:.,.:-::: ぶ泌：況：必埃.,.,.,必：ぷ：況：：泣-:心.,ぶ•ぇ：必：心•：ぬ：必：ぶ-:-:-:・:-:・ぶ・=・=・=・=・=・='='訟-:-:必：：殴：•:•:-:-:-:・:-:•:•:•:•:•:-:-:-:-:-:・:=:=:-:-:必：：粟：•:•:•:•:高：•:•:•:❖:•:•:•:=:-:=:-:::必：忘：：::: 芸：心.:-:-:-::苺.,::::::,:::泌：必：dI)/ 

μs  

1 rnernbership functionμ8 of u.s.c. fuzzy set S 

仁

。 Universe 

X(ど）

Cross section function v(~) ==μ 亙1([~; 1 ]) 

＇一



Particularization 

Random Closed Sets 

(RACS) 

Pr(XhitsK) = Tx(K) 

Random points 

Fuzzy sets 

Pr(Xhits{ k}) =μ(k) 

Finite probabilities 

particularization 

A 11t: {a} 
closed set singleton 
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Relation to the Fuzzy s~t theory 

fuzzy connectives 

The binary operator /¥defined by: S1 AS2 = <p(x:(S1)n x:(S2)) is 

commutative, associative and verifies the boundary 

conditions of a T-norm but・ 1s not necessarily monotonic. 

Several operators can be obtained, some of which are 



Upper/Lo'w'er 

⇔ 

probabilities 

Genera 1 i zed 

induced by a
 

set of probab i 1 i ty 

Poss i bi 1 i ty/Necess i ty 

measures 

theory 

Upper/Lower 

⇔ 

probabilities 

Random 

induced 

Closed Set 

by a
 (RACS) 

multivalued 

theory 

mapping 

Almost 

⇔ 

surely non-empty 

Dempster-Shafer 

Random 

theory 

C 1 osecl Sets 

(Bel ief/Plausibi 1 ity) 

Upper semi-continuous Fuzzy sets 

Zadeh Poss i bi 1 i ty/Necess i ty measures 
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therefore… 

1) Both the Dempster-Shafer and the Fuzzy set theories 

can be expressed within the purely probabilistic 

framework of Random Closed Sets 

2) the widely used combination operators are all essentially 

equivalent to set-theoretic operators (n for 

Dempster's rule, n or U for the fuzzy connectives) 

葵

These combination operators are suitable for combining . •iiil 

knowledge is both imprecise and uncertain. ~ imprecise but certain knowledge, but inadequate when >

喜

combine imprecise and uncertain knowledge: 

probabilistic operator is required… 
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Ill. lmplementational issues and applications 
実用にあたっての問題点

1. statistical estimation of RACS 

1 .1 parametric vs. non-para_metric estimation 

1.2 an example of RACS model: the Boolean model 

1.3 the choice of structuring elements 

in non-parametric estimation 

2. application to texture analysis & synthesis 

2.1 model fitting with the Boolean model 

2.2 example 

2.3 fractal images and RACS 

3. application to stereo-vision 

3.1 the stereo-vision context 

3.2 the sources of error in stereo-vision: 

imprecision vs. uncertainty 

3.3 data RACS and visual field RACS 

3.4 an octree of structuring elements 

for non-parametric estimation 

3.5 results and interpretation 

4. potential applications to Artificial Intelligence 



Statistical Estimation of RACS 

We decide to model a particular problem using a 

Random Closed Set X 

==> we must estimate the probability measure of the 
random variable using the available samples Xi. 

¥I A event E r0, P(A) = Pr(Xー1(A)) = Pr ({a, X (a) E A}) = Pr (X E A) 

Choquet theorem: estimation of the hitting capacity T 

is enough. 

Tx (K) == Pr(XhitsK) 

Parametric estimati~~J vs. [ N~n-~ar~111_~tri:_e~!~rn~ion l 
＇

0

＝
 

"""""""
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Model fitting: 

stimation of a finite number 
of model parameters 

"Parzen window" method ? 

=> only in metric spaces 



An example of a RAGS model: 
the Boolean model 

Construction: U is a metric vector space (e.g. Euclidean space) 

1) X': Random Closed Set centered at O (→ non-stationary) : "primary grain;' 

2) {xふe,: Poisson point process with density 0 
→ {-K,nK,=0⇒ N(K.) and N(K』statisticallyindependent 
-elementary volume dv contains 1 point with probability 0(dv) 

We implant one realization of X'at each xi and take the union: 

X=UX' 
ie/ 

Properties: in general, we have: 

{ Qx (K) = Pr(X missesK) = exp(-e.E(μ(X'ffiK))) 

Tx (K) == Pr(XhitsK) = l-exp(-e.E(μ(X'④ K))) 

whereμis the Borel measure of罰

The measure of the dilation by a convex K is given by Steiner's formula in terms 

of the Minkowsky functionals of町 (seeref.13, pg.111): 

In飢 Tx(入.K)= 1-ex{-0・[ :~~-~~)+~U(K).E{U(X')) ]] 

where A() and U() are the area and the perimeter in沢2.

In町： TXけ.K)= 1-expl -0.1 

入
E(V(X')) +-M(K).E(S(X')) 

4冗

入 2
+― .S(K).E(M(X')) +刀V(K)
4冗

where V(), S() and M() are the volume, the surface and the norm in町

（← Minkowsky functionals in 9¥3). 



The choice of structuring elements 
in non-parametric estimation 

If we have NO metrics and NO model, standard 

non-parametric estimation methods do not apply. What can 

wedo? 

=> we must select a finite family of compact sets K 

(structuring elements) and probe our sample data with K. 

We cannot estimate the hitting capacity functional itself but 

only its value at our structuring elements. This may be 

sufficient in many practical cases if we do not need the value 

of Tfor any arbitrary compact K. 

=> we do not define a unique RACS anymore, but a family 

of RACS constrained to behave similarly on the given family 

of structuring elements. 

1 



Application to Texture Analysis/Synthesis 

Given a texture pattern, we can try to fit a RACS model, 

estimate the model parameters, store the estimated 

parameters in memory, and then synthesize the texture from 

the stored parameters. 

Example with the Boolean model: 

the parameters of the model are: the density of the Poisson 

point process and the information about the average grain 

(expectancy of the Minkowsky functionals of the grain). 

ヤ和四・・

符.500 IMAGE ANALYSIS AND MATH EMA TI CAL MORPHOLOGY (f~ 炉約厄 13) 

-----
Figure XIII.6. Micrograph from a polished section of formcoke. The carbon appears as white 

and the pores as dark. The latter will be considered to be the grains when modelled by a Boolean 
set. 



Fractal images and RACS 

If an image is well modelled by a RACS X, the behavior of r: パ入K)when入→0
provides information about the fractal nature of the image, and its fractal dimension. 

Q(訳） Q(入K)

゜入 入

Germ model Fractal image 



Application to Stereo-vision 

Ye 
3D scene P(X, Y,Z) 

/ 

left camera 

/ 

／ 

right camera 

Xe 

Problems: the resulting 3D map is 

-inaccurate, especially along Zc axis 

(~Zc~10cm to 1 m for typical values) 

-noisy (matching errors) 

-highly sensitive to calibration errors 

-incomplete (only partial information due to limited 

visual field, occlusions) 



One solution: integration 
of multiple stereo-pairs 

30 scene 

-redundancy of 30 information 

=> accuracy increases 

=> errors decrease 

-complementarity of 3D information 

=> disambiguation (occlusion) 

=> completeness increases 



Previous integration methods 

1) Model the errors by ellipsoids and compute 

an approx1mat1on of th e1r 1ntersect1on. 

Xe 
Ye 

Problem: what if the ellipsoids do not intersect? 

should we discard the "bad" data? 

which ones are "bad"? 

-_＇._' 



Previous integration methods 

2) Model the errors by gaussian probability distributions 

in space and compute the "optimal" fused distribution 

using Kalman filtering. 

Problem: optimali~y only guaranteed for gaussian distributions. 

But errors in 30 space are NOT gaussian! 

Ex.: disparity d=O -> imprecision region in space extends 

to infinity and actual 30 point may lie anywhere in this region. 



The sources of error: 
Imprecision vs. Uncertainty 

1) Imprecision due to: 

-digitization (pixels) 

-imprecision in system geometry 

½s ts½b1~b~b2 
-imprecision 1n system location 

Y
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The sources of error: 
Imprecision vs. Uncertainty 

_ 2) Uncertainty due to: 

random sensor noise 

=> erroneous extraction of feature points 
=> noise in 30 map 

possibility of matching errors 

when the correlation function is multimodal, 
selecting one mode may lead to errors 

=> erroneous 30 information 
=> noise in the 30 map 



The Structuring Elements 

We select a family of rectangular solids of different sizes 

called OCTREE (8-tree) as structuring elements. 

For every rectangular solid C in the tree, we estimate: 

Prob(X hits C)~ 
nb. of times Xi hits C 

n
 

一ー＇』．ー

'
1
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Data RACS and Visual Field RACS 

The 30 polyhedra created by every disparity vector from 

image pair i form the Data Random Set (Data RAGS) Xi 

The 30 polyhedron created by the visual field at location i 

forms the Visual Field Random Set (Visual RACS) Vi 

What we can easily estimate is: 

Prob(X hits C and C is visible) 

What we need is: 

Prob(X hits C I C is visible) 



Statistical Estimation 

Prob(X hits C I C is visible)= 
Prob(X hits C and C is visible) 

Prob(C is visible) 

estimated by: 
nb. 

nb. 

of Xi hitting C 

of vi⇒ C 

Indeed, for any given C, the hitting between C and Xi is a Bernouilli 

random variable with probability of success a= Tx (C) and the 

number of hittings is the sum of these Bernouilli random variables, 

hence a binomial random variable if the Xi are independent. 

The Central Limit theorem guaranties that the binomial distribution 

will converge to a normal (Gaussian) distribution of mean n. a 

as n increases. Hence the average number of hittings is an 

unbiased estimator of Tx (C). 

一



What to do with the estimated capacity? 

Using the estimated hitting capacity functional, we can: 

1) use it for robot navigation: compute the "best" path in 

the octree from point A to point B that avoids (misses) 

scene objects with high probability. 

2) use it for object recognition: compute a goodness of fit 

between the octree and objects stored in a database, 

based on the capacity distribution. 

3) visualize it: we compare the estimated probability to a 

threshold --c and keep (show) only the cubes with high 

hitting probabilities (high plausibilities): 

Prob(X hits C I C is visible)> t (t E [O, 1]) 

-forて=0,the remaining cubes are the union of all the 

data sets 

=> weakest integration 

-forて一>1 , the remaining cubes are the intersection of all 

the data sets 

=> strongest integration 



Experiments 

Example: 

Integration of 30 stereo pairs of views of a single object 

System parameters: 

focal length 14 70 pixels~f~1520 pixels 

baseline 9.95 cm~b~10.05 cm 

System location and orientation: 

location R = 3mm 

orientation a (yaw)士0.1deg. 

p (pitch)士0deg. 
y (roll) = 0土0deg. 

See references 10 and 11 for experimental results. 



Potential Applications to Artificial Intelligence 

U is a space of primitive "objects". 

(U, T) is a topological space: we can speak of 
neighborhoods, continuity in U. 

A compact K of U is a "concept" in U. 

We receive data = imprecise and uncertain pieces of 
information about the observable world ==> modelled by 
a RAGS X. 

We are interested in the plausibility of a concept Kin 
view of the data X: 

Plausibility of Kin view of X = Pr(XhitsK) = Pl(K) 

and the amount of support (belief) of a concept K in 
view of X: 

Support (belief) of Kin view of X = Pr(X c K) = Bel(K) 
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