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Random Closed Sets:
theory and applications

Philippe Quinio
ATR Auditory and Visual Perception Research Lab.

This report contains all the materials (slides,
pictures) presented at a series of talks on the RACS
theory, held at ATR Auditory and Visual Perception
Research Laboratories in November 1991.
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. What is a Random Closed Set?
FEERBAEA L 1T ?

review of basic topology (AL FI#/T %)
1.1 topological spaces (i FHZ2)

1.2 open and closed sets (B4, BIEAR)
1.3 continuity, semi-continuity

CEM G, FEMER)
1.4 compact sets (2 ¥ /%7 MNER)

review of basic probability measure theory

(EE—P{EUE% i)

2.1 c-algebras, events (IR, FH)

2.2 measures, probability measures
(HEE. HESREIED)

2.3 measurable mappings, random variables
(FTHEIEAR ., FESRAR)

2.4 Borel c-algebras generated by a topology

(R VIVINETE)

Random Closed Sets (F&=E%E4E )
3.1 Hit or Miss topology (Hit/Missfy4H)
3.2 formal definiton  (FEF%)

3.3 Choquet's theorem (Choquet® EH)



XI1I. RANDOM CLOSED SETS 483

L2 Yitaie

.. GARYE.BU
PEUPLEMENT. LICNEUR -

Figure XI11.2. Two examples of phenomena suitably modelled by Boolean sets. (a) (above) ferrite
crystals in an iron sinter, (b) (below) portion of the forest of Fontainebleau. (See also
micrographs of clay Figure V.31 (x 3.000) and oogoniae Figure IX-13(a), which are both
Boolean. In the second example, the primary grain is made of two disjoint cells.)
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. What is a Random Closed Set?
MEREAEAS & 13 ?

Random Closed Set

v X
["Random Variable”] [ "Open/Closed"J ( "Element/Set" ]

L

probability [ topologyj . [ set theory ]
theory




1. Review of topology

A topological space is a pair (U,Q), where U is a set ("universe")
and Q is a set of subsets of U that verifies:
) PeQ, UeQ
i) if O, eQand 0, eQ, then O, N0, €Q
(i.e. Q is stable for finite intersection)
iii) if O, €Q, then lleJAol eQ

(i.e. Q is stable for union)

Elements of Q are called open subsets of U,
their complements in U closed subsets of U.
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Examples of topological spaces

Discrete topology

(U,P(U)) is a topological space for any set U.

= every subset is both open and closed!

Trivial topology

(U,{@,U}) is a topological space for any set U.

= only @ and U are open (and closed)!

Metric topology

if (U,8) is a metric space (distance §), (U,Q) where Q is generated
by the open balls is a topological space.

B(O,p)={xeU,8(x,0)<p} open ball of center O and radius p
Euclidean topology (%", 6)

= metric topology in R" with § the euclidean distance:

2

5(X(X1,...,Xn),}/(yl,---,y,, ))': i(xi _Yi)

i=l



Continuity of a mapping

(U,,Q,)—(U,,Q,) - mapping from topological space (U,,Q,)
X—Yy to topological space (U, ,Q,)

f is continuous iff the inverse image of every open set of U, is openin U,:
VO, eQ,,f(0,)eQ,

f is continuous iff the inverse image of every closed set of U, is closed in U, :
VF,e®,,f'(F,)e®,




continuity, discontinuity
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Semi-continuity of a function

f:(U,Q)—(R,9Q,) function from topological space (U, Q)

X—=y to metric topological space (%,Q,)

f is upper semi - continuous iff the inverse image of every closed set [x,+oo[ of R

is closed in U: Vx eR,f([X,+o)e®
f is lower semi - continuous iff the inverse image of every closed set ] — o, x] of R
is closed in U: VXxeR, ' (J-oo,x])e®
closed
"y
X

closed
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Compact sets
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2. Review of probability measure theory

A o-algebra (o-field) X of Uis a set of subsets of U stable
for countable unions and complementation:
) VAeXZ A°eX

i) VA,.,A,.eT,JAex

The elements of a o-algebra are called events.
(U,%) is called a measurable space.

A function u:X+— R is a measure iff:

) VAeX 0u(A)<e

i) w(@)=0

i) VA eX(fori=12,.),AnA =0 wheneveri # j,

then u(uA) = gu(A,.)

(U,z,u) is called a measure space.

If u(U)=1then u is called a probability measure and
(U,z,u) a probability space.




Measurable mappings
Random variables

f:(U,Z,)—~(U,,Z,) mapping from a measurable space into
another is said measurableiff the inverse image 77 (A,)
of every event A in U, isaneventin U: VA €XZ f7(A)eX.

A measurable mapping f:(U.,Z,,Pr) > (U,,%,) from a probability
space into a measurable space is called a random variable.

finduces a probability measure Pin (U,,X,):
P(A)=Pr(f"(A))=Pr({xeU, f(x)e A}
noted Pr(f(x)e A)) oreven Pr(fe A)



Example of random variable

Let f: (U,%,Pr)i>(R,X, ) be a real - valued random variable.
Y., is generated by the open intervals (balls): ]a,b[
P(la,bl) =Pr(f"(Ja,bD))=Pr({xeU,f(x)€la,b[})
=Pr({xeU,a<f(x)<b})
noted Pr(a<f<b)




Topological c-algebras and measures

I (U,Q) is a topological space, the smallest o-algebra =
containing all the open sets (£ o Q) is called the
Borel ¢ - algebra of (U,Q) and measures defined on
are called Borel measures.

¥, contains all the open sets, all the closed sets and all countable
intersections and unions of open and closed sets.



3. Random Closed Sets

3.1 Hit or Miss topology

Let (U,Q) be a topological space.
We want to build a topological structure on the set-® of the closed subsets of U.

Consider the sets | .

O ={F e®,FhitsO,FmissesK}={Fe®,FNO=L,F NK =0}
for all opens O and all compacts Kin U.

The topology generated by all O?is called the Hit or Miss topology .

3.2 definition of Random Closed Sets

A Random Closed Set (RACS) is a random variable valued in the measurable
space (®,%, ), where X is the Borel o - algebra of (©,0).

X:(U,,%,,Pr) (@,2,,P)

P(A)=Pr(X eA) for A eventin X,

Since =, is generated by Oy, it is sufficient to work with the O :
P(O2)=Pr(X €07 )=Pr(X hitsO and X missesK')




Fig.2: Hit or Miss topology (F; and F, belong to the same neighborhood 0, n o0y, n o, noO'X)



Choquet's theorem

A RACS Xis entirely determined by its hitting functional T, defined on the
compacts of U: T, (K)=Pr(XhitsK)=Pr(XnK = J).

Conversely, a functional T defines a unique RACS X iff:

) T(K)<1

iy T(D)=0

iy T(K)IT(K) whenever K, L K (sequential continuity)

i\)) Vn>O,V(K0,K1,...,Kun),T(Ko)s Z(—l)"'“T(KouUK,.)

Iedl,....n} iel

T, is an alternating Choquet capacity of infinite order, called hitting capacity of X.

RACS in finite spaces

Finite sets can be made topological spaces: discrete topology
=> all subsets are open, closed and compact
=> Random Closed Sets are simply called random sets.




Summary of part |

A Random Closed Set is simply a random variable valued
in a set of subsets, instead of a set of points.

These subsets are closed in a topological sense.

A RACS is entirely determined by knowing the probability that
it hits some given compacts.

These compacts are structuring elements that we use
to probe our random set.



Il. Links with other theories of Uncertainty
TEFR D @\~ S HFG & D BT

1. a semantics for Random Closed Sets
1.1 the knowledge acquisition problem:
Imprecision vs. Uncertainty
1.2 random sets
1.3 experimental accessibility and topology
1.4 Random Closed Sets

2. link with the Dempster-Shafer theory
2.1 Belief and Plausibility functions
2.2 relation to hitting and inclusion capacities
2.3 summary of the links
2.4 extensions of the Dempster-Shafer theory
based on RACS

3. link with the Fuzzy set theory
3.1 Fuzzy set membership functions
3.2 Fuzzy connectives




Knowledge Acquisition

Physical World

Sensor imprecision

Sensing
Possibility of error

Y

Knowledge Space

The acquired knowledge is inherently imprecise
and possibly erroneous, hence uncertain

l

Explicit representation of
both imprecision and uncertainty is required
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- Experimental accessibility and topology

In uncountably infinite spaces, experimental accessibility
implies a notion of topology ("neighborhood", "continuity”...)

R

closed

)
0q A
| ¥
\

closed u



Random Closed Sets
(RACS)

<Set theorD ...................... fit Probabtigty M@
eory

Random Set
theory.

Topology

Random Closed Set
theory .

Choquet's theorem:

A random closed set Xis entirely determined by its hitting
(Choquet) capacity .

T, (K)=Pr(XhitsK)




Relation to the Dempster-Shafer theory
(in a finite space)

Belief function Bel:
Bel: P(U)—~[0,1]

A — Bel(A)
()  Bel(@)=0
(i)  Bel(U)=1
(iii) Bel( ,.)2 > (- Bel( A,) for every finite family A, ,..., A,
i=1,...n Ic(l,...,n} iel
#

| Plausibility function Pl:
Pl:  PU)—[0,1] |
A— PI(A)

(i) PUD)=0
(i) PIU)=1
(i) Pl(

n

A,.)s > (D Pl(UA,.) for every finite family A ,..., A

j=1,.. I<fl,..,n} iel
12

Belief interval of A:
[Bel(A),PI(A)]=[Bel(A),1-Bel(A°)]=[1-PI(A°),PI(A)] < [0,1]
lgnorance with respect to A: P1(A) — Bel(A)



Relation to the Dempster-Shafer theory
(in a finite space)

U finite set --> topological space with discrete topology

--> "discrete topological space”

The Belief functions Bel defined on a (finite) universe Uare |
exactly the inclusion capacities of the almost surely |
non-empty Random (Closed) Sets X of the discrete |

topological space U.

The Plausibility functions P/ defined on a (finite)
universe U are exactly the hitting capacities of the
almost surely non-empty Random (Closed) Sets X of the

discrete topological space U.




Relation to the Dempster-Shafer theory
(in a finite space)

Dempster-Shafér

PI(K)

Plausibility function -
~ Bel(K)

Belief function -

q(K)

Communality function ~-—

m(K) ‘

Mass function ~-—>

[Bel,® BeL, |(K)= ), ( Zml(B)-mz(C)j

Ahits K \ A=BnC

Unnormalized Dempster's rule -a—

5 ( zmxB)-mz(cﬂ
[Bel, ® Bel, J(K) = £222 Azzgﬁl(s)mz(c)

BAC=02

‘Normalized Dempster's rule  -a—»

RACS

T, (K) =Pr(X hitsK)

Hitting capacity of a.s.
non-empty RACS
P,(K)=Pr(X cK)

Inclusion capacity of a.s.
non-empty RACS
R,(K)=Pr(K c X)

Implying functional of a.s.
non-empty RACS

Pr(X =K)

Probability density with respect
to the counting measure

Ty, nx, (K) = AEK( Y Pr(X, =B;X, = c))

A=BnC
Intersection of independent a.s.
non-empty RACS

] Aéx[ S Pr(X, = B;X, =C)J

T K)= A=BnC
X193Xz( ) 1— ZPT(X1=B;X2=C)

BnC=2
Conditional intersection of
independent a.s. non-empty RACS
given that they are not disjoint




therefore...

\

The Dempster-Shafer theory is the theory
of statistically independent, almost
surely non-empty Random Closed Sels

in finite spaces, with intersection as the
| combination operator




Extensions of the Dempster-Shafer theory

1) Open World assumption (Smets 1988, Matsuyama 1989)

=> drop the "almost surely non-empty" requirement

Theory of statistically independent Random Closed
Sets in finite spaces, with intersection as the
combination operator

RR0Soan0 e e

2) extension to infinite spaces

=> Random Closed Sets are defined in general compact
metrizable topological spaces (Matheron 1975)

heory of statistically independent Random Closed |
Sets with intersection as the combination operator

3) Dempster's rule with non-independent pieces of evidence

- 5 Sptn-0%-0)

AhitsK \ A=BNC

- Theory of Random Closed Sets with
intersection as the combination operator




Relation to the Fuzzy set theory

fuzzy set membership functions

cross-section

_——>
fuzzy sets -— = Random sets
point coverage (Goodman 1982)
[ »
cross-section
(upper) —
semi-continuous <¢——— Random Closed Sets
point coverage

Hs A

1 —4— membership function ng of u.s.c. fuzzy set s

Universe

X (&)

Cross section function V(&) = ug'([£;1])




- Particularization

Random Closed Sets Fuzzy sets

(RACS) .

Pr(XhitsK) =T, (K) Pr(X hits{k}) = (k)

\ Random points Finite probabilities
—r—

Pr({x}hitsK) = Pr(x  K) | Pr{{x}hits{k}) = Pr(x = k)

particularization

A = {a]

closed set singleton
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Relation to the Fuzzy set theory

fuzzy connectives

(The binary operator A defined by: S,A S, = ¢(K(51)ﬂ K(Sz)) is
commutative, associative and verifies the boundary
conditions of a T-norm, but is not necessarily monotonic.
Several operators can be obtained, some of which are
T-norms, depending on the statistical dependence between

x(S,) and K(SZ) .




Upper/Lower probabilities induced hy a set of probability measures

<= Generalized Possibility/Necessity theory

Upper/Lower probabitities induced by a multivalued mapping

<= Random Closed Set (RACS) theory

Almost surely non-empty Random Closed Sets

= Dempster-Shafer theory (Belief/Plausibility)

Upper semi-continuous Fuzzy sets

Zadeh Possibility/Necessity measures




therefore...

1) Both the Dempster-Shafer and the Fuzzy set theories
can be expressed within the purely probabilistic
framework of Random Closed Sets

2) the widely used combination operators are all essentially
equivalent to set-theoretic operators (" for
Dempster's rule, () or \J for the fuzzy connectives)

/

These combination operators are suitable for combining
imprecise but certain knowledge, but inadequate when
knowledge is both imprecise and uncertain.

To combine imprecise and uncertain knowledge, a
probabilistic operator is required...




l1l. Implementational issues and applications

EHIZH 72> TORGER

statistical estimation of RACS
1.1 parametric vs. non-parametric estimation
1.2 an example of RACS model: the Boolean model
1.3 the choice of structuring elements
in non-parametric estimation

application to texture analysis & synthesis
2.1 model fitting with the Boolean model

2.2 example

2.3 fractal images and RACS

application to stereo-vision

3.1 the stereo-vision context

3.2 the sources of error in stereo-vision:
imprecision vs. uncertainty

3.3 data RACS and visual field RACS

3.4 an octree of structuring elements
for non-parametric estimation

3.5 results and interpretation

potential applications to Artificial Intelligence




Statistical Estimation of RACS

We decide to model a particular problem using a
Random Closed Set X

==> we must estimate the probability measure of the
random variable using the available samples Xi.

VAevent €X,, P(A)=Pr(X"(A))=Pr({a,X(a) e A})=Pr(X € A)

Choquet theorem: estimation of the hitting capacity T
is enough.
T (K)=Pr(XhitsK)

X

Parametric estimation} VS. [ Non-parametric estimation

Model fitting: "Parzen window" method ?

stimation of a finite number => only in metric spaces
of model parameters



An example of a RACS model:
the Boolean model

Construction: U is a metric vector space (e.g. Euclidean space)

1) X' : Random Closed Set centered at 0 (— non-stationary) : "primary grain;'
2) {x,} : Poisson point process with density 6
{ - K,nK, =@ = N(K,) and N(K,) statistically independent
- elementary volume dv contains 1 point with probability 8(dv)

We implant one realization of X' at each x, and take the union:
X=UX",

Properties: in general, we have:

4 “
Q, (K)=Pr(X missesK') = exp(—6.E(1( X' @©K)))
T, (K)=Pr(XhitsK)=1-exp(-0.E(u(X'®K)))
where u is the Borel measure of R”
\ J

The measure of the dilation by a convex Kis given by Steiner's formula in terms
of the Minkowsky functionals of R" (see ref.13, pg.111):

R T, (A.K) =1 exp _({E(A(X’)) ¥ -Z%U(K).E(U(xv))

+A*.A(K)

where A( ) and U( ) are the area and the perimeter in R?.

E(V(X'))+441—-M(K)-E(S(X'))
N®E: T, (A.K)=1-exp| -0 . | i
+% .S(K)-E(M(X'))+’13~V(K)J

where V( ), S( ) and M( ) are the volume, the surface and the norm in %?

(< Minkowsky functionals in R}°?).




The choice of structuring elements
in non-parametric estimation

~If we have NO metrics and NO model, standard
non-parametric estimation methods do not apply. What can
we do? o

=> we must select a finite family of compact sets K
(structuring elements) and probe our sample data with K.

We cannot estimate the hitting capacity functional itself but
only its value at our structuring elements. This may be
sufficient in many practical cases if we do not need the value
of T for any arbitrary compact K.

=> we do not define a unique RACS anymore, but a family
of RACS constrained to behave similarly on the given family
of structuring elements.



Application to Texture Analysis/Synthesis

Given a texture pattern, we can try to fit a RACS model,
estimate the model parameters, store the estimated ‘
parameters in memory, and then synthesize the texture from

the stored parameters.

Example with the Boolean model:

the parameters of the model are: the density of the Poisson
point process and the information about the average grain
(expectancy of the Minkowsky functionals of the grain).

Frowm :
Vg. 500 IMAGE ANALYSIS AND MATHEMATICAL MORPHOLOGY ( vefererice 13 )

Figure XII1.6. Micrograph from a polished section of formcoke. The carbon appears as white
and the pores as dark. The latter will be considered to be the grains when modelled by a Boolean

set.




Fractal images and RACS

If an image is well modelled by a RACS X, the behavior of T (AK) when A —0
provides information about the fractal nature of the image, and its fractal dimension.

QQAK) QAK)
1A 1A
<t N
0 >
0 x> .

Germ model Fractal image



Application to Stereo-vision

A
Y? 3D scene P(X.Y.2)

left camera

-
-
~
~
-
-
-y
-

~

Xw

Problems: the resulting 3D map is
- inaccurate, especially along Zc axis
(AZc~10cm to 1m for typical values)
- noisy (matching errors)
- highly sensitive to calibration errors
- incomplete (only partial information due to limited
visual field, occlusions)




One solution: integration
of multiple stereo-pairs

- redundancy of 3D information
=> accuracy increases
=> errors decrease

- complementarity of 3D information
=> disambiguation (occlusion)
=> completeness increases



Previous integration methods

1) Model the errors by ellipsoids ana c'ompute |
an approximation of their intersection.

Problem: what if the ellipsoids do not intersect?
should we discard the "bad" data?

which ones are "bad"?




Previous integration methods

2) Model the errors by gaussian probability distributions
in space and compute the "optimal" fused distribution
using Kalman filtering.

Problem: optimality only guaranteed for gaussian distributions.
But errors in 3D space are NOT gaussian!

Ex.: disparity d=0 -> imprecision region in space extends
to infinity and actual 3D point may lie anywhere in this region.



The sources of error:
Imprecision vs. Uncertainty

1) Imprecision due to:

- digitization (pixels)
- imprecision in system geometry
f<f<f b, <b<b,

-imprecision In system location

Y

yH1




The sources of error:
Imprecision vs. Uncertainty

'2) Uncertainty due to:

random sensor noise

—> erroneous extraction of feature points
=> noise in 3D map

possibility of matching errors

when the correlation function is multimodal,
selecting one mode may lead to errors

=> erroneous 3D information
=> noise in the 3D map



The Structuring Elements

We select a family of rectangular solids of different sizes
called OCTREE (8-tree) as structuring elements.

7

v
v

e

For every rectangular solid C in the tree, we estimate:

nb. of times X hits C
n

Prob(X hits C) =




Data RACS and Visual Field RACS

The 3D polyhedra created by every disparity vector from
image pair i form the Data Random Set (Data RACS) Xi

The 3D polyhedron created by the visual field at location i
forms the Visual Field Random Set (Visual RACS) Vi

What we can easily estimate is:
Prob(X hits C and C is visible)

What we need is:

Prob(X hits C | C is visible)



Statistical Estimation

Prob(X hits C | C is visible) = Prob(X hits C and C is visible)

Prob(C is visible)

( N

nb. of X hitting C
nb. of V. - C

estimated by:

Indeed, for any given C, the hitting between C and X, is a Bernouill
random variable with probability of success a =T, (C) and the
number of hittings is the sum of these Bernouilli random variables,
hence a binomial random variable if the X, are independent.

The Central Limit theorem guaranties that the binomial distribution
will converge to a normal (Gaussian) distribution of mean n.c

as nincreases. Hence the average number of hittings is an
unbiased estimator of T (C).




What to do with the estimated capacity?

Using the estimated hitting capacity functional, we can:

1) use it for robot navigation: compute the "best" path in
the octree from point A to point B that avoids (misses)
scene objects with high probability.

2) use it for object recognition: compute a goodness of fit
between the octree and objects stored in a database,
based on the capacity distribution.

3) visualize it: we compare the estimated probability to a
threshold t and keep (show) only the cubes with high

hitting probabilities (high plausibilities):

Prob(X hits C | C is visible) >t (t<[0,1])

- for ©=0, the remaining cubes are the union of all the
data sets

=> Weakest integration

- for 1->1, the remaining cubes are the intersection of all
the data sets

=> Strongest integration



Experiments

Example:

Integration of 30 stereo pairs of views of a single Aobject

System parameters:
focal length 1470 pixels < /< 1520 pixels
baseline 9.95cm < b<10.05¢cm

System location and orientation:
location R =3mm
orientation o (yaw) = 0.1 deg.

B (pitch) + 0 deg.
v (roll) = 0 £ 0 deg.

See references 10 and 11 for experimental results.




Potential Applications to Artificial Intelligence

U is a space of primitive "objects".

(U,T) is a topological space: we can speak of
neighborhoods, continuity in U.

A compact Kof Uis a "concept" in U.

We receive data = imprecise and uncertain pieces of
information about the observable world ==> modelled by
a RACS X.

We are interested in the plausibility of a concept Kin
view of the data X:

LPlausibility of Kin view of X =Pr(XhitsK ) =PI(K) }

and the amount of support (belief) of a concept K in
view of X:

{ Support (belief) of Kin view of X = Pr(X  K) = Bel(K) ]
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