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Abstract 

A planar 17 muscle model of the monkey's arm based on realistic biomechanical 

measurements was simulated on a Symbolics Lisp Machine. The simulator implements the 

equilibrium point hypothesis for the control of arm movements. Given initial and final 

desired positions, it generates a minimum-jerk desired trajectory of the hand and uses the 

backdriving algorithm to determine an appropriate sequence of motor commands to the 

muscles (Flash 1987; Mussa-Ivaldi et al. 1990; Domay 1991b). These motor commands 

specify a temporal sequence of stable (attractive) equilibrium positions which lead to the 

desired hand movement. 

品
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A strong disadvantage of the simulator is that it has no memory of previous computations. 

Determining the desired trajectory using the minimum-jerk model is instantaneous, but the 

laborious backdriving algorithm is slow, and can take up to one hour for some trajectories. 

In order to overcome this problem, a fast learning, tree-structured network (Sanger 1991c) 

was trained to remember the knowledge obtained by the backdriving algorithm. The neural 

network learned the non1inear mapping from a 2-dimensional cartesian planar hand position { x, y} 

to a 17-dimensional motor command space { u1, ... , u17 j. Leaming 20 training trajectories, 

each composed of 26 sample points { { x, y} , {町・,・, u17} } took only 20 minutes on a 

Sun-4 Sparc workstation. After the learning stage, new, untrained test trajectories as well as 

the original training trajectories of the hand were given to the neural network as input. The 

network calculated the required motor commands for these movements. The resulting 

movements were close to the desired ones for both the training and test cases. 



1. Introduction 

Hand movements toward stationary targets are common in the motor repertoire of primates 

(Georgopoulos 1986). In order to control a movement the brain must determine a desired 

trajectory (hand path and velocity) in visual coordinates, and realize the desired trajectory by 

giving a flow of motor commands to the muscles. Theoretically, finding a trajectory between 

the initial and desired hand positions is an ill-posed problem because it cannot be solved in 

a unique way. The experimentally found invariant tendency of primates to generate hand 

trajectories with roughly straight paths and bell-shaped velocity profiles in unconstrained point 

to point movements in the horizontal plane in front of the body defines a unique solution to 

that problem (Morasso 1981). To account for such kinematic features a mathematical model, 

the minimum-jerk model was proposed (Flash and Hogan 1985). The trajectories predicted 

by the minimum-jerk model are in good agreement with the experimental data for 

unconstrained movements in front of the body (Flash 1987; Uno et al., 1989). The most 

useful property of the minimum-jerk model is probably its simplicity. Assuming the 

movement to start and end with zero velocity and acceleration, the desired hand trajectory is 

easily computed using the following equation: 

z(t) = z。+(z。-z1) X (15冗4 - 6が— JOが） (1) 

where z is x or y , (x ,y) is the hand position, (x。,y。)is the initial hand position at 

time t = 0 , (x y)・ 1s the final hand pos1t10n at t = t , and冗=t It (Flash and 

Hogan 1985). 

The equilibrium point hypothesis for the control of movement (EP) suggests that stable 

hand postures are used by the brain to control arm movements (Feldman 1966; Bizzi et al. 

1982, 1984). The hypothesis is based on the observation that muscles behave like tunable 

springs (Rack and Westbury 1969). Furthermore, the muscles acting upon a joint are 
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organized in agonist/antagonist configurations. Thus, at any level of neuromuscular 

activation, a limb's equilibrium position is achieved when the opposing torques generated by 

the agonist and antagonist muscles cancel each other. Each motor command vector specifies 

a unique stable equilibrium position of the arm, with a zero net force at the hand. This 

equilibrium position corresponds to a limb configuration in which the potential energy stored 

by the muscles is at a minimum (Mussa-Ivaldi et al. 1990). If the limb is displaced by some 

external transient perturbation, the elastic neuro-muscular properties generate a torque which 

restores the equilibrium configuration. According to the EP the brain generates movements 

by creating a temporal set of stable attractive equilibrium positions called a virtual trajectory 

(Hogan 1984). The location of the attractive equilibrium position along the virtual trajectory 

changes during the movement, and serves to draw the arm from the initial to the final 

position. The actual hand trajectory may be different from the virtual trajectory because the 

real movement is influenced by the dynamic properties of the arm, while the virtual trajectory 

is only a temporal set of static equilibrium positions. Simulation studies by Flash (1987) have 

shown that multi-joint arm movements at moderate speed can be generated by choosing a 

virtual trajectory defined by the minimum-jerk model. This finding dramatically decreases 

the computational task needed by a brain which uses the EP for controlling a movement. The 

brain only needs to calculate a set of static equilibrium positions on the virtual trajectory, and 

avoids complex dynamic calculations. 

If the brain is to use equilibrium point control, it must compute the motor commands to 

the muscles which specify the equilibrium positions on the virtual trajectory. This is a 

moderately difficult ill-posed problem. An infinite number of different motor commands for 

specifying an equilibrium position are possible even in the simplified case where only 2 

antagonistic muscles control the torque in each joint. The real case is more complicated 

because many single and double joint muscles affect the torque produced in each joint. A 

曹
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pseudoinverse algorithm, called backdriving (Mussa-Ivaldi et al. 1990), was used as a solution 

to the problem (Dornay 1990, 1991a, 1991b, 1991c). The goal of the backdriving algorithm 

is to calculate a change in the motor command to the muscles for moving the location of the 

equilibrium position during the movement. The backdriving algorithm finds a unique solution 

by using a local static optimization approach of minimizing the change in the potential energy 

stored in the muscles during the variation of the motor commands. The algorithm can be 

conceptualized in two steps. First, a passive displacement from the equilibrium point to the 

next position is simulated. Second, the motor commands to the muscles are chosen to cancel 

the resultant hand force, while minimizing the change in potential energy. 

The output of the minimum-jerk model is used as the target input to the backdriving 

algorithm, for specifying the locations of the virtual equilibrium positions, as suggested by 

Flash (1987). A detailed technical report describing the implementation of the minimum-jerk 

model and the backdriving algorithm, using a 17-muscle model of the monkey's arm was 

recently described (Dornay 1991b) and should be consulted for more details. A brief 

description will be given in sections 2 and 3. 

While both the minimum-jerk model and the backdriving algorithm solve ill-posed 

problems, no analytical solution exists for the latter. In order to bypass the large amount of 

computational time needed by the backdriving algorithm, a fast learning, tree structured 

artificial neural-network (Sanger 1991a, 1991b, 1991c) was trained to remember and 

generalize the knowledge obtained by the backdriving algorithm. The network algorithm is 

composed of simple elements with no prior knowledge of the arm properties, and implements 

a general-purpose learning mechanism. 

In this paper we describe control of unconstrained point to point arm movements in the 

horizontal plane in front of the body, using the minimum-jerk model and the backdriving 

algorithm as training teachers for a fast learning "neural-like" algorithm. We describe the 
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ability of the neural network to learn the nonlinear mapping between a 2-dimensional hand 

position to a 17-dimensional motor command space, and to work together with the minimum-

jerk model for creating the motor commands needed for ann movements. The combined 

minimum-jerk model and network algorithm produced a hybrid model which can provide fast 

control of complex multi-joint systems, after a very short training period (20 minutes on a 

Sun-4 Sparc workstation). 

冨

□→ 

2. A Planar 2-Joint Arm Model 

A stable planar 2-joint model of the arm is shown schematically in Fig. 1. The torso, 

upperann, and forearm links are modeled as rigid line segments, representing the bones. The 

3 links are interconnected by the shoulder and elbow revolute joints. The relative angles of 

rotation are 01 E [-45°, 90°J for the shoulder and 02 E [ 30°, 135°] for the elbow. Link 

length and attachment centers on the bones of the muscles were measured by anatomical 

dissections in 2 rhesus monkeys (Table 1). Planar projection of the 3-D real structure was 

done by X-ray. A total of seventeen muscles including shoulder, elbow and two-joint flexors 

and extensors have been included in the model. The static postural stability of the hand was 

assured by using a detailed muscle geometry representation, including effective origins and 

insertions of the muscle attachments to the bones (Fig. 2). 

Each muscle is represented as an elastic element whose rest-length and stiffness are 

regulated by a motor command. A tunable linear length-force curve was attached to each 

muscle (Rack and Westbury 1969; Zeffiro 1986), 

f =K(u)(l(0) -l。(u)) = muscle force (2) 

The motor command u can have any value from zero to one. K(u) is the muscle stiffness, !(0) 

is the length as a function of joint angle, and l。(u)is the rest-length (length when f = 0). 
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A bigger motor command u will increase K and decrease l。,increasing the produced musck 

force. Measured volumes and estimated rest-length were used as scaling factors, based on 

in vivo parameters of the triceps which served as a reference muscle (Zeffrro 1986; Dornay 

1991b). 

3. Hand Movement From Posture 

A variety of ann movements between different positions in the hand workspace were 

simulated, using the minimum-jerk model for planning the trajectory and the backdriving 

algorithm for choosing the motor commands (Dornay 1990, 1991a, 1991b, ・199lc). The 

trajectory predicted by the minimum-jerk model was a straight path with 26 intermediate 

hand-positions defining a bell shaped velocity profile. A motor command to the 17 muscles 

was specified for each intermediate equilibrium point The motor command profiles for all 

the muscles were very smooth in all the tested trajectories. Typical virtual trajectories1 

predicted by the minimum-jerk model and the backdriving algorithms are shown in Fig. 3. 

4. The Neural Network 

The neural network is based on a new algorithm for approximating continuous functions in 

high-dimensional input spaces. The algorithm builds a tree-structured network of variable size 

w.hich is determined both by the distribution of the input data and by the function to be 

approximated. Efficient computation in this tree structure takes advantage of the potential for 

low-order dependencies between the output and the individual dimensions of the input (Sanger 

1991a, 1991 b, 1991c). 

The neural network uses a set of Fourier basis functions. Basis function networks have 

1As explained in the Introduction, and based on Flash (1987), only virtual static 
equilibrium trajectories were calculated in this work. 
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proven to be useful for approximating functions in a variety of different domains (Poggio and 

Gerosi 1989; Powell 1987; Klopfenstein and Sverdlove 1983). Such networks are represented 

by equations of the form: 

g = J;roi ¥lfJX) (3) 

where x = (x1, ... ,xP) is the input, g is the desired (scalar) output, g is the output 

approximated by the network, and the叫 sare learned scalar weights. The吼'sare multi-

dimensional Fourier basis functions. If the input dimension p is large, a prohibitively large 

number of basis functions is used. This problem is often referred to as the curse of 

dimensionality. The tree algorithm discussed in the next section attempts to avoid this 

problem by noting that in some regions of the input space, the desired output function can 

be approximated using only a few dimensions of the input. 

5. Network Structure 

(A concise summary is provided here. For a complete description, consult Sanger (1991a, 

1991 b, 1991c)). If the吼'sare separable functions we can assume without loss of generality 

that there exists a finite set of scalar-input functions Y = {剌，.• • , <j)N} such that 

p 

'l'i (x) = JI <pi,/ xj) 
j=l 

<¥>i,j E y (4) 

If there are p input dimensions and N possible scalar functions <l>n , then there are NP 

possible basis functions ¥jfi. The tree algorithm for building the network tries to reduce the 

number of basis functions and coefficients that need to be computed. The network is built 

up one dimension at a time. Approximation using only the first dimension x1 gives: 
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N 

§111 = E an剌(x) (5) 

n=l 

where the a's are the weights for th e one-dimensional basis functions 剌(x)along this 

dimension, and the superscript indicates that only one dimension of the input has been used 

to estimate the scalar output g . 

In order to train the weights, we use the LMS learning algorithm (Widrow and Hoff 1960) 

to reduce the mean-squared output error E /(g -g 111) 2} by 

~an=Y (g-gllJ)丸(Xl) (6) 

where y is a small rate term. Given sufficient input samples x1, this algorithm will converge 

until the average value E {△ an} = 0 for all n. The output g 111 will then be the best linear 

approximation of g based on the values <t>n< x1). 

If g cannot be well approximated using only x1, then there will be some residual e汀or

(g咽 fJJ}. Although this error will be uncorrelated with叫(x1) for all n, the variances 

咄凡）2} will be non-zero, indicating that there is pressure to change the weights. 

Although on average this pressure is zero, for particular instances the output error would be 

reduced if the weights could be either larger or smaller. In general, the output error will be 

zero if and only if E/(△ anJ2} = 0 for all n (Sanger 1991a). We can improve the 

approximation of g by allowing the weights to vary based on information from the x2 

dimension. Suppose we pick r to be the value of n for which E /(△ a) n } is largest. 

We now add a term which varies with x2: 

N 

E~J.n 剌（も） (7) 

n=I 
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to the weight e<i-1 (see figure 4). We use the LMS rule to learn the weights匁，fl : 

△ ~,,n =△g剌(X2) (8) 

The approximation at the output is now: 

N 

gf2] = gfl] + 剌い）ど~,n 見（も） (9) 

n-1 

This procedure can be followed for every value of n at each of the p dimensions. In 

general, the weight change at any layer in the tree is the error term for the layer below it (see 

Fig. 4). 

New trees are added as ne~ded below any level node, and weights are trained using a 

recursive learning rule: 

△a。=y(g-g)

~Ct,rl = "f (g -g) <¥>,1 (XI) =△a。0り化）
△ a,1•'2 ='Y (g -g)見(XI)位(x2) =~a,1 位（も） (10) 

1 

~ar1,···,rがJ =~ar1,···,rd¢rd•/ (xd+l) 

As the tree is grown, its ability to approximate the desired function g increases. The 

algorithm was implemented with a time-varying rate term w面chdecreased proportional to t -J 

from a starting value of 0.005. The basis functions剌werethe Fourier basis. The network 

used 10 Fourier basis functions (sin (nゃ）， cos(nxd) for n = 1, ... ,5) for each of the 

two input dimensions. To learn multipl~outputs, separate trees were created for each desired 

output function g., l = 1, ... ,17. 
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6. Training The Neural Network 

The training procedure used 39 minimum-jerk trajectories from the same initial hand position 

{ 0.05, 0.33} rn. The final positions were on a 0.15 rn radius arc drawn from the initial 

position (see Fig. 5a). Each trajectory consisted of 26 equilibrium positions. Only the odd-

numbered trajectories were used for training. Performance of the network was tested on the 

complete set of 39 trajectories. The network's task was to learn the nonlinear mapping from 

2-dimensional cartesian planar hand positions { x, y } to the 17-dimensional motor commands 

ロ}sp:e~ こここ~-trained on 12,000 sample points drawn randomly from the 20 training 

trajectories. New subtrees were added at fixed intervals every 400 samples. For the first 200 

samples of each interval the weights in the new subtree were allowed to converge. During 

the second 200 sample interval convergence continued, but estimates of the weight variances 

were accumulated. At the end of the 400 sample interval a single new subtree was added 

below the leaf node with the highest weight variance. The network was grown to 30 subtrees. 

The whole training stage took 46 minutes on a Sun Sparc workstation. 

7. Evaluation Of Learning 

The performance of the network was investigated both at the level of motor command errors 

estimated by the network itself, and at the level of the predicted trajectories. 

Following the training stage, both the train and test trajectories were given as inputs to the 

neural network. For each input hand trajectory, we used the neural network to calculate 

approximate muscle activities. Increasing the number of trees and complexity of the network 

increased the training time while decreasing the motor command errors estimated by the 

network (Fig. 6). No statistically significant difference could be detected in these motor 

command errors between the train and test trajectories, and they were pooled and treated as 
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one group. Table 2A shows that increasing the number of trees in the network from 15 to 

30 significantly decreased both the average and the variance of the motor command errors 

estimated by the neural network. 

The forward arm model simulator (Domay 1991b) was used to calculate the actual hand 

trajectories based on the motor commands predicted by the neural network. The accuracy of 

predictions was tested by comparing the desired input trajectories (Fig. Sa) with the actual 

trajectories which resulted (Fig. 5b,c). For a given neural network complexity (number of 

trees) and for a specific trajectory, the hand position errors are calculated by: 

K 

E == El(ふ一xi)2+ (文— yi)2
i=l 

(11) 

where K is the number of intermediate points defining a trajectory (in our case K = 26), 

（ふ，凡}represents the actual trajectory predicted by the neural network + forward hand 

model. {ふ， yi} represents the desired input trajectory given by the minimum-jerk model. 

Table 2B shows that increasing the number of trees in the network from 15 to 30, 

significantly decreased the average and variance of the errors in the hand trajectories. Again, 

no difference could be detected in the hand position errors between the train and test 

trajectories, and they were pooled and treated as one group. 

8. Discussion 

In this paper we have described a neural network implementation for equilibrium point control 

of arm movements (EP) (Bizzi et al. 1984; Flash 1987; Domay 1991b). A virtual trajectory 

of the hand is planned by a global kinematic optimization approach (the minimum-jerk model, 

Flash and Hogan 1985). This virtual trajectory, and the initial motor command to the 

muscles, serve as inputs to a local static optimization approach (the backdriving algorithm, 
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Mussa Ivaldi et al. 1990). The backdriving algorithm calculates a temporal set of motor 

commands to the muscles, defining a temporal set of static equilibrium positions on the 

virtual trajectory. This computational approach can create realistic arm movements in 

primates (Flash 1987), while avoiding complex dynamic calculations suggested by other 

models (Kawato 1991). A fast learning, general purpose, artificial neural network, with no 

prior knowledge of the system kinematics statics or dynamics (Sanger 1991a, 1991b, 1991c) 

was successfully trained to remember the knowledge of the backdriving algorithm. The 

network learned the nonlinear mapping from a 2-dimensional cartesian hand position { x, y} 

to a 17-dimensional motor command space { u1, •··, u17} by supervised learning, in which 

the backdriving algorithm served as a "teacher". The combined minimum-jerk model and 

network algorithm produced a hybrid model which can provide fast control of complex multi-

joint systems, after a very short training period (20 minutes on a Sun-4 Sparc workstation). 

Since control of each of the 17 muscles was learned independently, a parallel implementation 

of the neural network algorithm could reduce the learning time by a factor of 1 7. 

Although the current work employed the EP to avoid calculation of the dynamics, the 

validity of the hypothesis does not depend on the conclusion of Flash (1987) that no dynamic 

calculations are needed, but on whether or not a stable equilibrium position of the hand is 

defined at all times by the neuro-musculo-skeletal system (Dornay, 1991c). If biological 

systems do not behave as suggested by Flash (1987), than complex calculations might be 

needed for finding a virtual trajectory that will result in a realistic hand movement. This 

would m政ethe EP less computationally attractive, but not necessarily incorrect. The 

approach used by us in this study focuses on creating the equilibrium positions on a旦立且

virtual trajectory, and is therefore basically correct as long as the use of the equilibrium point 

control is a valid computational hypothesis. 

The definition of the motor command u used in (2) is another source of ambiguity 
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(Feldman 1986; Feldman et al. 1990). If we consider a simplified system in which reflex 

feedback does not exist, such as for deafferented muscles (Bizzi et al. 1982), the motor 

command must be identified with the a neuronal activity. In intact animals the a neuronal 

activity specified by the brain can be modified by reflex feedback, and may not remain 

constant while the motor command specifies an equilibrium position. Therefore the a 

neuronal activity that the muscles see cannot be the motor command, a constant value of 

which should specify an equilibrium position (Feldman 1986; Feldman et al. 1990). The 

motor command according to Feldman (1986) contains a combination of central inputs to the 

a and y motoneurons, and to intemeurons mediating proprioceptive influences upon the 

motoneurons. It has been proposed that an important role of reflex feedback is to compensate 

for sudden reductions in force which may occur in fast movements in the absence of reflexes. 

This sudden reduction in muscle force is called muscle yield, and shows some of the complex 

nonlinear behavior of muscles (Nichols and Houk 1976; Carter et al. 1990). If we assume 

that the centrally specified a neural activity defines the location of the equilibrium position, 

and that the role of reflexes is to compensate for the nonlinear behavior of muscles and to 

augment the stability of the equilibrium position, we can still use (2) as a simplified linear 

approximation of the complex motor command suggested by Feldman (1986). In this work 

we assume that the behavior of the motor command can be roughly estimated according to 

(2), and use this simplified assumption as an approximation for the behavior of the biological 

system. 

A three layer sequential artificial neural network was recently reported to perform aiming 

movements of the limb (Massone and Bizzi 1989). The network was trained by supervised 

learning, and coded sensory motor transformations using an eight muscle static model of the 

frog leg. The approach adopted by our study is different. Massone and Bizzi's (1989) 

network produced both the motor commands to the muscles and the hand trajectory. The bell 

-12-



shaped velocity profile was imposed as specific knowledge. This resulted in a network which 

is quite complex, and very difficult to train. In our approach, we emphasize the generality, 

simplicity and speed of learning. To do so, the 2 tasks of finding the virtual trajectory and 

of finding the motor commands to the muscles are separated into 2 independent modules. We 

also assumed no specific prior knowledge of kinematics, statics or dynamics. The only 

knowledge imposed on the network was the dimension of the input and output spaces. This 

resulted in a general and efficient scheme of learning, which the brain may utilize for many 

other tasks in addition to motor control. Some examples are provided in (Sanger 1991a, 

1991b, 1991c). 

We do not propose that the learning scheme used in this work represents the whole process 

of motor learning in biological systems. The task of biological motor learning is much more 

difficult, because the "teacher" cannot directly show the correct motor commands to the 

"student" but can show only the desired trajectory. This problem was addressed by Jordan 

(1990) and termed "supervised learning with a distal teacher." The task presented to the 

artificial neural network in this work is much simpler, because the problem of converting the 

error from task oriented coordinates to the motor command space is solved by the 

biomechanical model of the arm and the backdriving algorithm. Further, biological systems 

like monkeys or humans can start moving their hands from any position to any position in 

the workspace, and from various initial hand stiffnesses. The backdriving algorithm 

incorporated in the biomechanical model exhibits this ability, and the motor commands 

predicted by it depend both on the desired trajectory and on the initial motor commands. 

Different sets of motor commands (and hand stiffness) can be produced by the backdriving 

algorithm for the same trajectory, depending upon the initial motor command at the starting 

position of the hand. The simple learning employed by the neural network in this work 

cannot cope with this one-to-many ill-posed problem, and needs a unique mapping between 
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the 2-dimensional hand position input to the 17-dimensional motor command output. For that 

reason we indeed trained the network starting always with the same initial motor commands 

to the muscles and from the same initial hand position. 

Future extension of this work will teach the network all the knowledge available from the 

backdriving algorithm. The network will learn the mapping between a given equilibrium 

position x a and the motor commands associated with it, and the next desired equilibrium 

position on the virtual trajectory xb, to a new motor command which will code for xぃ

(! {孔，Ya}'(ua,1'...,ua,17}'(xb'沈｝｝→ ! (ub,1'…, Ub,17) j) (]2) 

Using this learning strategy, hand movements from any initial position to any desired position 

in the workspace may be generated. The hand stiffness will be specified at all times because 

each 17-muscle motor command vector specifies both a unique equilibrium hand position and 

a unique stiffness. The power of the tree-structured network to deal with the higher 

dimensional input would be even more important for such a study. However, the results 

presented here demonstrate that a simple artificial neural network can be trained to provide 

accurate equilibrium point control of a realistic model of the monkey's arm. 
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Figure Legends 

Fig. 1. A stable planar 2-joint ann model. The postural stability of the ann is represented by 

the hand stiffness K. A negative-definite K is a necessary and sufficient condition for hand 

stability. a: When the hand is displaced from a stable equilibrium position, an elastic 

restoring force is observed. b: Plotting the restoring force magnitudes following 0.0001 

m displacements around a stable equilibrium position creates a stiffness ellipse. C: Typical 

directions and relative magnitudes of the restoring forces at 0.0001 m displacements from the 

equilibrium position of the hand. Due to non-linearity, the directions of the restoring forces 

are not necessarily towards the equilibrium position. The stiffness data were obtained from 

the monkey ann simulator (Dornay 1991b). The stiffness representation was proposed by 

Mussa-Ivaldi et al. (1985). 

Fig. 2. The geometric model of the shoulder flexor muscle Pectoralis Major Stemalis is 

shown as a typical example. The muscle is modeled as an elastic line attached to different 

links. It originates from the bone represented by the torso link at 1. Its insertion to the bone 

which is represented by the upperarm link is at 4. The muscle is constrained by connective 

tissues represented by the effective origin 2 and effective insertion 3. The joint angle affects 

whether the muscle is wrapped around its pulley at the joint (3) or whether it is unwrapped 

ch) . Note that the moment arm of the muscle IS constant when It IS wrapped, and depends 

on the joint angle when it is not wrapped. The effect of the geometric model on the postural 

stability of the hand is discussed in detail in Domay (1991b, 1991c). 

Fig. 3. Equilibrium trajectories. a: Two typical minimum-jerk paths, from 1 to 2 and from 

2 to 3. The backdriving algorithm calculated the motor commands for defining each 
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intermediate point on the paths as a stable equilibrium position. Six stable stiffness ellipses 

are drawn on the paths, showing that the equilibrium positions are attractive. b: The hand 

and joint trajectories, and C: the motor commands, for the path from 1 to 2. Note the 

correspondence between the motor commands and the joint trajectories. U = motor command, 

S = shoulder, E = elbow, D = double joint muscle, e = extensor, f = flexor. The serial 

muscle numbers refer to Table 1. 

Fig. 4. Two-layer tree constructed by the algorithm. The x's are inputs, <I>'s are basis 

functions, and a's are weights. See section 5 for further explanation. (Reprinted from 

Sanger 1991c by permission of MIT press). 

Fig. 5. The training procedure was based on creating trajectories from the same initial 

cartesian hand position {0.05, 0.33} rn. The final positions were on a 0.15 m radius arc from 

the initial position. The 39 desired trajectories (3) were created by the minimum-jerk model. 

Odd-numbered trajectories were used for training. The network learned to predict the motor 

commands which produced the desired trajectories. The testing trajectories were not provided 

during training. After the learning stage, the trained and test trajectories were provided as 

input. The network produced 17 motor commands for each of 26 positions on each input 

trajectory. The motor commands were used to produce the hand trajectories by the forward 

arm model, and then the produced trajectories were plotted in (b) and (C). The accuracy of 

predictions is tested by comparing the desired trajectories (3) with the predicted ones (b) , 

(C). 

Fig. 6. Effect of the neural network complexity on the training time and on the motor 

command errors. More trees represent a more complex network. The average of the motor 
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command errors was pooled over the 39 trajectories, and is shown for each number of trees. 

● = Training time; 0 = Motor command error. 

Table Legends 

Table 1. The dissected muscles. 

Table 2. Analysis of network performance. Increasing the number of trees in the network 

from 15 to 30: (A) significantly decreased both the average and variance of the motor 

command errors, and (B) significantly decreased both the average and variance of the hand 

trajectory errors. Since the variances were unequal, appropriate ttest for unequal variances 

were used both in (A) and (B). No significant difference could be detected in the motor 

command or hand trajectory errors between the train and test trajectories, and they were 

pooled and treated as one group (N = 39 trajectories, for both A and B). 
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TABLE 1, THE DISSECTED MUSCLES. 

＃ Muscle Origin Insertion Function 

1 Latissimus Dorsi Vertebrae Humerus Shoulder Extensor 

2 Posterior Deltoid Scapula Humerus Shoulder Extensor 

3 Teres-Major Scapula Humerus Shoulder Extensor 

4 Teres-Minor Scapula Humerus Shoulder Extensor 

5 Infra-Spinatus Scapula Humerus Shoulder Extensor 

6 Pectoralis Major Capsularis Clavicula Humerus Shoulder Flexor 

7 Pectoralis Major Sternalis Sternum Humerus Shoulder Flexor 

8 Anterior Deltoid Clavicula Humerus Shoulder Flexor 
， 

， Coraco Brachialis Scapula Humerus Shoulder Flexor 

10 Triceps Lateralis Humerus Ulna Elbow Extensor 

11 Triceps Medialis Humerus Ulna Elbow Extensor 

12 Brachialis Humerus Ulna Elbow Flexor 

13 Brachio-Radialis Humerus Radius Elbow Flexor 

14 Pronator Teres Humerus Radius Elbow Flexor 

15 Triceps Longus Scapula Ulna 2-Joint Extensor 

16 Biceps Brevis Scapula Radius 2-Joint Flexor 

17 Biceps Longus Scapula Radius 2-Joint Flexor 



TABLE 2, ANALYSIS OF NETWORK PERFORM岱 CE

TASK 
15 TREES (I) 30 TREES (II) STATISTICAL 

Average Variance Average Variance 
ANALYSIS 

Motor command 21 * 10-3 26 * 10-6 15 * 10-3 80 * 10,-7 
Average: (II)く (I)

errors estimated 
ttest: p < 0.001 

A 
by the neural -

(100%) (100%) (71%) (31%) 
Variance: (II)く (I)

network ftest: p < 0.001 

Hand position 8.0 14 5.4 4.7 
Average: (II) < (I) 

ttest: p < 0.002 
B errors for the 

predicted motor 
(100%) (100%) (68%) (34%) 

Variance: (II) < (I) 
commands (cm) ftest: p < 0.001 
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