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Abstract 

We propose computationally coherent models of the four regions of the cerebel-

lum based on the feedback-error-learning scheme. We assume that climbing fiber 

responses represent the efference copy o.f motor commands generated by premotor 

networks such as feedback controllers at the spinal-, brain stem-and cerebral levels. 

Based on the long-term depression in Purkinje cells, each corticonuclear microcom-

plex in different regions of the cerebellum learns to execute predictive and coordi-

native control of different types of movements. Ultimately, it acquires an inverse 

model of a specific controlled object and complements crude control by the premo-

tor networks. Thus, premotor network activity decreases as the learning proceeds. 

As a representative example, computer simulation of simultaneous adaptation of the 

vestibulo~ocular reflex and the optokinetic eye movement response was successfully 
performed while the Purkinje cells receive eye-velocity signal by recurrent neural 

connections as well as the vestibular input and the retinal slip as parallel fl ber inputs. 



1. Introduction 

Based on detailed knowledge of the neural circuits in the cerebellum, Marr (1969) 

and Albus (1971) proposed cerebellar perceptron models. Purkinje cells, inhibitory 

output neurons in the cerebellar cortex, receive two different types of main synaptic 

inputs: parallel fibers and climbing fibers. In the perceptron models, the efficacy of a 

parallel fiber-Purkinje-cell synapse was assumed to change when the conjunction of 

the parallel-fiber input and the climbing-fiber input occurs. Furthermore, Ito (1970) 

proposed that the flocculus of the cerebellum is the site of synaptic plasticity for 

adaptive modification of the vestibulo-ocular reflex. The vestibulo-ocular reflex is 

the reflex to move the eye in the direction opposite head rotation in order to stabilize 

the retinal image. 

The presence of the putative heterosynaptic plasticity of Purkinje cells was demon-

strated as long-term depression (see Ito, 1989 for review). In whole animal prepa-

ration of rabbits, Ito, Sakurai and Tongroach (1982) found that the efficacy of the 

parallel-fiber-Purkinje-cell synapses decreases when both parallel fibers and climb-

ing fibers are simultaneously stimulated. Recently, Sakurai (1987) confirmed the 

long-term depression in slice preparation of guinea pig cerebellum. 

The Marr-Albus model regards the cerebellum as a pattern classifier and does not 

account for the dynamical processing associated with motor control. Fujita (1982a) 

expanded the Marr-Albus model by incorporating a dynamical viewpoint and pro-

posed an adaptive filter model of the cerebellar cortex. Adaptive modification of 

the vestibulo-ocular reflex was successfully simulated based on a detailed neural 

network model and the long-term depression (Fujita, 1982b). 

The cerebellum is divided into separate sagittal regions with distinctive anatom-

ical connections, the flocculonodular lobe, the vermis, the intermediate zone of the 

hemispheres, and the lateral zone of the hemispheres (Ito, 1984). These divisions 

form three functionally distinct parts of the cerebellum: the vestibulocerebellum, the 

spinocerebellum, and the cerebrocerebellum. The cerebrocerebellum is the lateral 

zone of the cerebellum. Its inputs originate in pontine nuclei which relay informa-

tion from the cerebral cortex, and its output is conveyed by the dentate nucleus to 

the thalamus and then to the motor cortex. The spinocerebellum includes the vermis 

at the midline and the intermediate zone of the hemispheres. These two regions are 

the areas of the cerebellum which receive sensory information from the periphery. 

The vermis is related to axial motor control; the intermediate zone is related to dis-

tal motor control; the vestibulocerebellum occupies the flocculonodular lobe. Fur-

thermore each region is subdivided into corticonuclear microcomplexes (Ito, 1984). 

Several research groups provided data which suggest that different regions of the 
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cerebellum play important roles in learning of different motor behavior, such as arm 

movement (Gilbert & Thach, 1977; Gellman, Gibson & Houk, 1985; Wang, Kim 

& Ebner, 1987), locomotion (Udo et al., 1980; Matsukawa & Udo, 1985), posture 

control (Nashner, 1981; Amat, 1983), and conditioning (Thompson, 1987). 

Although inputs and outputs, and functional roles of different regions of the 

cerebellum are vastly different, the neural circuit in the cerebellar cortex is rather 

uniform. Given this histological uniformity of the cerebellar cortex and different 

functional modules, it seems reasonable to seek a computational framework in which 

motor learning of corticonuclear microcomplexes in different cerebellar regions is 

coherently understood. Ito (1970) asked: "What is the role of the cerebellum should 

thus be asked in the following two ways; i) common throughout the cerebellum, how 

does a given portion of the cerebellum process the incoming and outgoing informa-

tion?; ii) specific to each part of the cerebellum, how is a given portion involved 

in regulation of a particular motor activity?". Ito (1990) proposed a comprehen-
sive functional model in which a cerebellar microcomplex composed of a cortical 
microzone and a small cell group in a cerebellar or vestibular nucleus acts as an 

adaptive controller based on the synaptic plasticity of the long-term depression type 

in Purkinje cells, which is effected by control error signals of climbing fibers. In 

this model, microcomplexes are inserted in reflex arcs, command systems of volun-

tary motor control, and probably even cortical systems performing certain mental 

activities, providing adaptive-learning capabilities to these systems. Based on this 

physiological model, we develop a computationally coherent model of different re-

gions of the cerebellum. Especially, we try to characterize structural features of the 

cerebellar learning based on the feedback-error-learning model (Kawato, Furukawa, 

Suzuki, 1987). 

2. Feedback-error-learning as a computational principle of cere-
bellar learning 

2.1 Feedback-error-learning: biologically plausible supervised 
motor learning scheme 

Although Fujita's adaptive filter model (1982a) was epoch making in dynamical 

modelling of the cerebellar learning, it was still to be explored how to extend the 
modeling from the vestibulocerebellum to other regions of the cerebellum. In adap-

tive modification of the horizontal vestibulo-ocular reflex, one needs to deal with a 

single-degree-of-freedom system with roughly linear dynamics. On the other hand, 

for controlling multijoint limbs and the torso, we have to deal with multi-variable 

and predictive control of complex controlled objects with highly nonlinear dynarn-
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ics. Feedforward control is essential to achieve fast and smooth movements for 

large-scale, complicated and nonlinear objects because feedback loops at spinal-, 
brain stem-and cerebral levels have long delays and small gains. 

Our proposition here is that the cerebellum, by learning, acquires an internal 

model of the inverse of the controlled object. An inverse model is the model sys-

tem whose input and output correspond respectively to the output and input of the 

controlled object. An inverse dynamics model can be used as an ideal feedforward 

controller (Atkeson, 1989). Furthermore, the inverse system model can be used 

as an essential computational element for coordinate transformation and trajectory 

planning (Kawato, 1991). In the following, we discuss different computational ap-

proaches to acquire the inverse model, and discuss which approach is the one most 

probably adopted by the cerebellum. 

One of the features of the central nervous system in its control of movement 

is the capability of motor learning. For higher mammals, especially humans, su-

pervised learning is probably the most important class of motor learning. In nearly 

every case, the teacher cannot directly demonstrate the correct motor command to 

the student, but can only show the desired movement trajectory. How might such 

learning proceed? Perhaps the answer entails a neural network that receives a de-

sired motor pattern and outputs a motor command to realize a desired movement. If 

a teacher were to able to give the difference between an ideal motor command and an 

actual motor command, then various supervised learning rules could be used to train 

the motor-control network. However, this last step is not possible in practice, so the 

problem of converting errors from task-oriented coordinates to the motor-command 

space is an essential and difficult one. It has been addressed by Jordan (1990), under 

the rubric "supervised learning with a distal teacher." Barto (1990) has reviewed the 

topic and compared several different approaches. 

Two approaches have been proposed and used to resolve this problem. The direct 

inverse modeling approach is the simplest one. In this scheme, the inverse model 

is oriented in the input-output direction opposite that of the controlled object. The 

inverse model receives the trajectory as an input and outputs an estimated motor 

command. The difference between the estimated motor command and the actual 

motor command is used as the error signal for learning. For several reasons, it can 

not be considered a plausible model of learning in the brain (Kawato, 1990a). In 

the forward-inverse modeling approach (Jordan, 1990), the forward model of the 

controlled object is first learned by monitoring both the input and the output of the 

controlled object. Then, the desired movement trajectory is fed to the inverse model 

to calculate a feedforward motor command. The resulting error in the trajectory 

space is back propagated through the forward model to calculate the error in the 
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Figure 2 .. 1: Control structure of open-loop feedback-error-learning. 

motor command space, which is then used as the error signal for training the inverse 

model. Although this approach is very attractive, it can not be considered a model 

of the cerebellum because backpropagation is necessary. 

Exploring such approaches further, we have proposed afeedback-error-learning 

neural network as a model of the lateral cerebellum and the parvocellular part of the 

red nucleus (Tsukahara & Kawato, 1982; Kawato et al., 1987). Figure 2 .. 1 shows a 

block diagram of this scheme. Here the total torque T(t) fed to the controlled object 

is the sum of the feedback torque冗(t)and the feedforward torque冗(t)calculated 

by the feedforward controller. In the pure feedforward control case shown, an ideal 

feedforward controller is given by an inverse model of the controlled object. The 

inverse model receives the desired trajectory 0d and monitors the feedback torque 

Tc(t) for the error signal. Tn is calculated from the desired trajectory釦andthe 

synaptic weights w: 

冗=<l>(d況/dt2,幽 /dt,0d, w). (2.1) 

The shape of the function <I> depends on what kind of neural network actually cons ti-

tutes the feedforward controller. Here, 0 and 0d are n-dimensional vectors. r, re and 

Tn are m-dimensional vectors. w is a [-dimensional vector. <I> is am-dimensional 

vector function. 

The synaptic modification rule of the feedback-error-learning scheme is repre-
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sented in a general manner as follows: 

dw/dt = (8右／如）圧． (2.2) 

As a result of this synaptic modification rule, the feedback motor command tends 

to be zero as learning proceeds. If one compares this learning rule with various 

supervised learning schemes such as the Widrow-Hoff rule (1960), it is evident that 

the feedback motor command plays the role of the error signal. This learning scheme 

is called feedback error learning to emphasize the importance of using the feedback 

motor command as the error signal of the heterosynaptic plasticity. 

Mathematical foundations of the feedback-error-learning were recently investi-

gated (Kawato, 199Gb). It can be shown that the feedback-error-learning scheme is 

a Newton-like method in a functional space. In this interpretation, the feedback con-

troll er provides a linear approximation of the inverse model of the controlled object. 

Thus, conceptually, the feedback-error-learning is defined as the method to acquire 

the exact nonlinear inverse model of the controlled object based on the error signal 

provided by an approximated linear inverse model. The necessity of the approxi-

mated inverse model in calculating the error signal is best understood in situations 

where coordinate transformation is required between the sensory space and the mo-

tor space. For example, if we are asked to follow a straight line drawn on a paper, the 

visual system measures the error between the line and the realized trajectory in the 

retinal coordinates. However, because the arm-muscle coordinates are completely 

different from the retinal coordinates, the sensory error should be transformed into 

the muscle coordinates before it can be used for motor learning. Any computational 

mechanism which executes this task can be regarded as an approximated inverse 

model of the controlled object. In this case, the controlled object receives muscle 

activations and outputs the trajectory in the visual coordinates. 

2.2 Long-term depression as basis of feedback-error-learning 

Feedback-error-learning has the feedback controller convert trajectory error into 

motor-command error. Thus, in order for the feedback-error-learning scheme to 

be considered a computational framework of learning in the cerebellum, climbing 

fiber responses must represent the motor-command error instead of the movement-

trajectory error. The most fundamental and important assumption of our model is 

that the climbing fiber responses represent the efference copy of motor commands 

generated by the premotor networks. Premotor networks are defined as fundamental 

motor control networks that are upstream of the motor neurons but downstream of 

the cerebellum. Feedback loops at the spinal-, brain stem-and cerebral cortical level 
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are examples of the premotor networks. According to Houk and Barto (1991), the 

premotor networks range in complexity from simple spinal reflexes to motor cortical 

circuits controlling voluntary movement. Mathematically speaking, we believe that 

each premotor network which controls a specific movement of a specific controlled 

object can be assumed to provide a rough approximation of the inverse system of 

the controlled object. Co汀espondingly,each cerebellar microcomplex connected to 

the premotor network and the controlled object is trained to acquire a better inverse 

model of the controlled object while monitoring the activity of the premotor network 

as climbing fiber inputs. 

The above assumption leads to the following predictions about the spatial and 

temporal coordinate frames in which climbing fiber responses are represented. First, 

the coordinates in which the climbing fiber responses are represented must be mus-

cle coordinates rather than sensory coordinates. Second, sensory error should be 

temporally differentiated according to the approximated inverse dynamics of the 

controlled object, which is provided by the premotor network. 

If these conditions are satisfied, the feedback-error-learning can be realized by 

using the long-term depression in Purkinje cells as the synaptic plasticity mecha-

nism. The two basic equations 2.1 and 2.2 are rewritten for this case. For simplicity, 

in the following equation, the output of a Purkinje cell y is assumed to be a linear 

weighted summation of its parallel fiber inputs. 

y = I: 叫 Xi
m、

(2.3) 

Here, wi is the synaptic weight of the i-th parallel-fiber-Purkinje-cell synapse. The 

nonlinear transformation necessary for nonlinear controlled objects is provided by 

the circuit within and before the cortex or by nonlinear synaptic interaction in den-

drites of Purkinje cells. The feedforward motor command fed to deep cerebellar 

nuclei is the negative of y because the Purkinje cell is an inhibitory neuron. The 

following synaptic modification equation is based on the long-term depression. 

dwi/ dt = -x/F -Fspont) (2.4) 

Here, F is the firing frequency of the climbing fiber input and Fspoれtis its spon-

taneous level. The synaptic weight decreases in proportion to the product of the 

parallel-fiber input and the feedback motor command, that is, the increment of the 

climbing fiber input. When Fis lower than Fspont, Wi increases. This corresponds 

to the long term potentiation which occurs when only parallel fiber is stimulated and 

the climbing fiber is silent (Sakurai, 1987). 
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Figure 2 .. 2: Control structure of closed-loop feedback-error-learning. 

2.3 Adaptive closed-loop control by feedback-error-learning 

The spinocerebellum receives direct feedback information from the periphery, un-

like the lateral cerebellum. It is also widely accepted that the cerebellum is involved 

in movements which require feedback control rather than feedforward control, such 

as posture control, the optokinetic eye movement response and the smooth pursuit. 

Even some experimental paradigms designed to investigate voluntary movement, 

for example wrist tracking movement (ramp and slow ramp in Mano, Kanazawa, 

Yamamoto, 1986), can be executed only by feedback control. Thus, in order to 

coherently deal with learning in different regions of the cerebellum, we need to ex-

tend our computational model from the purely feedforward case to general situations 

which include adaptive feedback control as well as feedforward control. 

We proposed a closed-loop control system shown in Fig. 2 .. 2 based on the feedback-

error-learning scheme (Gomi & Kawato, 1990). 

The state of the controlled object 0 obeys the following nonlinear differential 

equation. 

註 /d社=f(d0/dt,0,r). (2.5) 

Here, f is a n-dimensional nonlinear vector function. The motor command T fed 

to the controlled object is the summation of the motor command Tc generated by 
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the conventional feedback controller and the motor command冗 calculatedby the 

nonlinear adaptive feedback controller (NNFC in Fig. 2 .. 2). Tn is given as follows. 

冗=<l>(d況/dt2,幽 /dt,似 d0/dt,e, 叫． (2.6) 

Please note that the NNFC receives the feedback information abut the state of the 

controlled object and its velocity but not its acceleration. The conventional feedback 

controller can be nonlinear, but here we explain the simple linear case, where it 

calculates the motor command according to the following equation. 

Tc= R望 (0d-0)/dt + K1d(0d -0)/dt + Ko(0d -0). (2.7) 

Here, this is a PDA (Proportional, Derivative, and Acceleration) feedback controller. 

The synaptic modification equation is exactly the same as that in the open-loop sys-

tem Eq. 2.2. 

dw/dt = (a冗 ;aw)圧． (2.8) 

As learning proceeds, the motor command generated by the conventional feedback 

controller decreases. It can be mathematically shown that based on this learning 

equation NNFC acquires the inverse dynamics of the controlled object plus the non-

linear PD feedback controller which uses the error and its first derivative. Ultimately, 

the overall system dynamics obeys the following differential equation. 

kば(0d-0) / dt + l詞 (0d-0)/dt + Ko(0d -0) = 0 (2.9) 

That is, the behavior of the total system is determined by the reference model pre-

scribed by the conventional feedback controller. 

In this scheme, the conventional feedback controller plays three roles. First, it 

converts the trajectory error into the motor-command error as a linear approximation 

of the inverse model of the controlled object. Second, like a typical feedback con-

troller, it guarantees global trajectory stability. Third, it defines an inverse reference 

model for the model-reference-adaptive control as shown in Eq. 2.9. For example, 

suppose that we prepare a PDA feedback controller in the Cartesian space. Then 

it defines the mechanical impedance of the hand tip in the Cartesian space. In this 

case,}も determinesthe virtual inertia, K1 viscosity, and Ko stiffness. 

If we simply feed a motor-command error to the adaptive feedback controller 

without summation with its derivative and acceleration, a difficult problem of gain 

explosion occurs. This is an inherent problem in an adaptive feedback controller. 

In feedback control, in order to decrease the motor error simply to zero, one needs 

to increase the feedback gain infinitely. This is not only impractical but also very 
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dangerous regarding system stability because feedback delay is always present. Our 

main proposition is to use a conventional feedback controller which outputs zero 

even when the trajectory error is not zero. This is an intuitive explanation of the 

inverse reference model. 

3. Vestibulocerebellum 

First, we briefly summarize experimental support for the flocculus hypothesis of 

adaptive modification of the vestibulo-ocular reflex (VOR). Three different approaches 

support the flocculus hypothesis (see Ito & Nagao, 1991 forreview). First, the VOR 

adaptation is abolished when the flocculus in cats, rabbits, and monkeys, or only 

the visual climbing fiber pathway in rabbits, is destroyed. Second, recordings from 

floccular H-zone Purkinje cells in rabbit and monkey revealed that Purkinje cell 

responses to mossy fiber inputs change in the direction which causes adaptive mod-

ification of the VOR. Gerrits & Voogt (1989) reported that the ventral paraflocculus 

of the monkey, which, until quite recently was thought to be part of the flocculus 

(see for example Stone & Lisberger, 1990), is anatomically distinct from the floc-

culus. Recently, Nagao (1991) found that neuronal responses in the monkey ventral 

paraflocculus are quite different from those of the flocculus. Thus, it seems that the 

ventral paraflocculus is not involved in the VOR. Third, the VOR neural circuit and 

computer simulation by Fujita (1982a, b) also support the flocculus hypothesis. 

A circuit diagram of the adaptive modification of the horizontal VOR and the op-

to kinetic eye movement response (OKR) is shown in Fig. 3 .. 1. The visual-climbing-

fiber system provides the error signal in learning, that is, the retinal slip (Maekawa 

& Simpson, 1973). 

Figure 3 .. 2 is a block diagram of the neural circuit. This is a model of only 

the microzone of the flocculus (H-zone) which is related to the horizontal VOR and 

OKR, and should not be taken as the model of the whole vestibulocerebellum. Here, 

む， 0eand 0ext denote the head rotational angle, the eye rotational angle and the ro-

tational angle of the external world, respectively. u is the motor command sent to 

muscles. Superscripts w, r, c and m indicate that each variable is represented in 

the world coordinates, the retinal coordinates, the canal coordinates, and the muscle 

coordinates. s indicates the Laplace operator that is temporal differentiation, and 

1 / s is temporal integration. Twc and Twr represent coordinate transformations from 

the world frame to the canal frame, and from the world frame to the retinal frame, 

respectively. The vestibular organ sends the head rotational velocity in the canal co-

ordinates d0'fi/ di to the vestibular nucleus and the flocculus. The forward dynamics 

of the eyeball is represented by the operator P. Because some portion of VOR is 
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Figure 3 .. 1: Schematic diagram of neural circuit for horizontal vestibulo-ocular re-

flex and optokinetic response. 
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Figure 3 .. 2: Block diagram of adaptive modification of vestibulo-ocular reflex and 

optokinetic response by the flocculus H-zone. VN is the vestibular nucleus and IO 

is the inferior olive nucleus. 

left even when the flocculus is destroyed, the lower reflex arc should provide the 

minus of the approximated inverse of the controlled object convoluted with integra-

tion -(P*)ー 1/ s. This is because the transfer function of the main reflex arc should 

be roughly-I: s・-(P*)-1 /s. P ~ -1. 
Simpson and Alley (197 4) showed that the visual system, which provides climb-

ing fiber input, senses the retinal slip velocity der / di. If the external world is sta-

tionary, the climbing fiber system calculates the summation of the head and eyeball 

velocities from retinal slip: d(仇＋仇）/di. Because the negative of the head velocity 

-d0h/ di is the desired eyeball velocity for perfect VOR, the summation of the two 

velocities equals the differential negative feedback term: de/di= d(0h + 0e)/dt = 

-d(0ed-0e)/ di. The minus sign in the third equation is canceled if one considers the 

three sign inversions, that is, long-term depression, inhibitory action of the Purkinje 

cells, and the minus sign of the lower reflex arc. If one compares Fig. 3 .. 2 with the 

block diagram of the feedback-error-learning in Figs. 2 .. 1 and 2 .. 2, it should be clear 

that the visual-climbing-fiber system computes the error signal as a derivative type 

feedback controller. Because the combined dynamics of the lower reflex arc and the 

eye can be approximated by the negative of the integration, this derivative-type neg-

ative feedback controller well corresponds to the approximated inverse dynamics of 
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this combined system. Consequently, the adaptive function of the flocculus can be 

understood based on the feedback-error-learning scheme. 

We assume that the output of the VOR system and the OKR system is summed 

linearly at the vestibular nucleus (Robinson, 1977). Furthermore, the flocculus is 

responsible for simultaneous adaptation of the VOR and OKR (Nagao, 1988,1989). 

Accordingly, the flocculus receives three kinds of synaptic inputs via parallel fibers: 

the head velocity signal measured by the vestibular organ d0ぇ/dt, the retinal slip 
signal measured by motion detectors in the retina and sent from the nucleus reticu-

laris tegmenti pontis d(0h +e; -e;xt)! dt, and the eye velocity signal or the efference 

copy of the motor command de:/ dt. The VOR system in Fig. 3 .. 2 corresponds to 

the open-loop feedback-error-learning shown in Fig. 2 .. 1, whereas the OKR system 

corresponds to the closed-loop feedback-error-learning shown in Fig. 2.:2. For both 

systems, the direct arc from the retina to the vestibular nucleus plays the role of the 

conventional feedback controller. 

We simulated simultaneous adaptation of the VOR and OKR based on the block 

diagram Fig. 3 .. 2. Feedback delay of 10 ms was assumed for the motor command 

feedback to the flocculus. For the calculation of the retinal slip, 20 ms feedback 

delay was assumed. The dynamics of the eyeball is modeled by t油inginto account 

the mass, viscosity and the stiffness. Numerical integration was done with 0.2 ms 

time increment which is shorter than the natural frequency of the eyeball. Initially, 

synaptic efficacies of the three inputs to the flocculus, that is the vestibular input, the 

retinal error input and the motor command feedback, are assumed all zero. Thus, 

VOR and OKR are executed only by the fixed feedback loop at the beginning of 

simulation. G is the transfer function from the retinal slip velocity to the climbing 

fiber responses. Actually we assumed that the inferior olive sends a linear combina-

tion of position, velocity and acceleration of the retinal slip. But the velocity term 

was chosen dominant according to the experiment data (Simpson and Alley, 1974, 

Nagao, 1988). 

We show simulation results in Fig. 3 .. 3. a shows the eye position, the head 

position, the external world position and the desired eye position during the first 10 

s of the total 1000 straining. The external world was rotated sinusoidally with 0.2 Hz 

and 0.4 radian peak to peak. The head was rotated by a stochastic process which has 

similar time course and amplitude. The eye should move according to the difference 

of the head angle and the visual world if VOR and OKR work perfectly. Before 

learning, they were quite different. b shows the time course of the moving average 

of the squared retinal error and the moving average of squared flocculus output. The 

flocculus output increased rapidly while the retinal error decreased only modestly. 

c shows changes of the synaptic efficacies of three different inputs to the flocculus: 
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Figure 3 .. 3: Simulation results for adaptive modification of vestibulo-ocular reflex 

and optokinetic response. a eye position, head position, external world position and 

the desired eye position at the beginning of the training. b moving average of the 

squared retinal error and moving average of squared flocculus output. c synaptic 

efficacies of three different inputs to the flocculus. d system performance before 

(left) and after (right) the training for VOR (upper) and OKR (below). 
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the vestibular input which codes the head velocity, the visual input which codes 

the retinal slip, and the motor command feedback. These three approached a stable 

equilibrium where the long term depression and passive weight decay just balance. 

It was experimentally shown that in the flocculus of rabbits and monkeys (Nagao, 

1991), the synaptic contribution of gaze velocity is quite small. Although the gain 

of the motor command feedback is considerably high in c, this should be small in 

the real system. Because we did not include the neural integrator in the lower reflex 

arc, the flocculus tried to construct its substitute unnaturally. d compares system 

performance before (left) and after (right) the training for VOR (upper) and OKR 

(below). 0.3 Hz and 0.4 radian peak to peak oscillation was used both for VOR and 

OKR. The VOR gain increased from 0.30 to 0.45 while the OKR gain increased 

from 0.28 to 0.43. 

This is a new simulation which first examines simultaneous adaptation of VOR 

and OKR (Nagao, 1988,1989). The inclusion of the recurrent connection in the 

learning is also important. This is considered a part of the neural integrator. It is very 

interesting that a biologically plausible learning scheme such as the feedback-error-

learning works quite well even when the recurrent connection is included. This is in 

sharp contrast to using the recurrent backpropagation (Anastasio, 1991) or random 

search method (Arnold & Robinson, 1991) which are biologically implausible. 
The question about the coordinate frame, in which the climbing fiber responses 

are represented, arises when vertical and rotatory VOR as well as horizontal VOR 

are studied. Simpson, Graf and Leonard (1989) examined the rotationai axis of the 

visual world to which visual climbing fibers optimally responded in rabbits. They 

found that these three axes match well the three axes about which the three pairs 

of extraocular muscles rotate the eyeball. Thus, the coordinate system in which the 

error signal is represented is the muscle coordinate system in the three-dimensional 

VOR, which is in good agreement with our model prediction. However, for lateral— 

eyed animals such as rabbits, coordinate frames of the semicircular canal and ex-

traocular muscles are not overly different. Thus, similar experiments using frontal-

eyed animals should allow us to clarify this coordinate problem. 

4. Lateral Cerebellum 

We originally proposed the feedback-error-learning scheme as a model of the lat-

eral cerebellum for voluntary motor learning (Kawato et al., 1987). In our model 

(Fig. 4 .. 1) the feedback controller and the summation of the feedforward and feed-
back command reside in the motor cortex of the cerebrum. The feedback loop is 

the transcortical loop. The desired trajectory is sent to the cerebellum and the motor 
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Figure 4 .. 1: Block diagram for learning control of voluntary movement by a corti-

conuclear microcomplex in cerebro-cerebellar communication loop. 

cortex from the association cortex. The output of the cerebellum is sent back to the 

motor cortex via the thalamus. It should be noted that Fig. 4 .. 1 shows a model of 

one corticonuclear microcomplex (Ito, 1984) in the lateral part of the cerebellum, 

and should not be taken as a model of the whole lateral cerebellum. 

Based on this neural network model, we succeeded in trajectory control learn-

ing of an industrial robotic manipulator with 6 degrees of freedom and nonlinear 

dynamics (Miyamoto et al., 1988). In subsequent studies, we found that an accurate 

inverse dynamics model of the manipulator can be acquired without prior knowl-

edge about the mechanical structure (Kawato, 1990a). Furthermore, Katayama and 

Kawato (1991) expanded the previous model to deal with the inverse statics problem 

(equilibrium for muscle spring like property) separately from the inverse dynamics 

problem. They succeeded in trajectory learning of an arm with 16 muscle-like ac-

tuators and 5 degrees of freedom. The artificial muscle arm has strongly nonlinear 

dynamics and suffers from redundancy at the dynamics level because each joint is 

controlled by agonist and antagonist muscle-like actuators like the musculoskele-

tal system. Consequently, we experimentally demonstrated that the proposed neural 

network model is computationally efficient in trajectory control learning of the mus-
culoskeletal system. 

A schematic diagram of the neural circuit model around the lateral cerebellum 
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is shown in Fig. 4 .. 2 based on Allen and Tsukahara (1974). The association cortex 

neurons send the desired trajectory 0d to the lateral cerebellum via the pontine nuclei 

as well as to the motor cortex. Via the transcortical loop, the motor cortex neurons 

are informed of the realized trajectory 0. By calculating the difference between the 

desired and the realized trajectory 0d -0, neural circuits in the motor cortex calcu-

late the negative feedback motor command u fb・This command is sent to the output 

neurons in the motor cortex. Simultaneously, its efference copy is sent to the in-

ferior olive nucleus and expressed as complex spikes in Purkinje cells as the error 

signal (see for example Gilbert & Thach, 1977 for support). The output of the cor-

ticonuclear complex is the feedforward motor command u11, which is sent to the 

thalamus from the dentate nucleus, and then to the motor cortex. The feedforward 

and the feedback motor commands are summed at the output neurons in the motor 

cortex to form u which descends the corticospinal tract. It is predicted that the signal 
sent from the cerebellum to the motor cortex increases as the motor learning pro-

ceeds, which is in agreement with the experimental data (Sasaki, Gemba & Mizuno, 

1982, Sasaki & Gemba, 1982). 

The most critical point here is whether the climbing fiber response encodes the 

motor-command error or the movement-trajectory error. To test this, we propose the 

following experiment which is shown in Fig. 4 .. 3. 

The climbing fiber responses of an alert monkey are recorded. The monkey 

hand position is measured by, for example, a manipulandum, and a hand cursor is 

presented on a CRT display. The monkey can not see his hand directly. The start 

position, the first target and the second target are displayed on the CRT. The reasons 

for using the target change paradigm are two-fold. First, Ebner's group found that 

complex spike activity is high when the target is changed (Wang, Kim, Ebner, 1987). 

Second, by placing the second target to the left or right of the first target, we can 

manipulate the sign of the trajectory error and hence the sign of the motor command 

error. 

Two types of coordinate transformations are introduced between the hand posi-

tion measured and the hand cursor presented in order to associate or dissociate the 

trajectory error and the motor command error. In the normal condition, orientation 

of movement is the same between the hand and the cursor. In this case, direction 

signs of the trajectory error and the motor command error are the same. But in 

the mirror-image condition, the left-right axis is inverted. Accordingly, the monkey 

needs to move his hand right in order to move the hand cursor left. In this case, 

direction signs of trajectory and command errors are opposite. In both conditions, 

the monkey moves his hand along similar trajectories. The following table shows 

firing patterns of the climbing fibers under various conditions, that is, whether they 

16 



CEREBRAL CORTEX ボ0~
給S

oG¥P... 

~o 
やe

MIDLINE 

Figure 4 .. 2: Schematic diagram of neural circuit for learning control of voluntary 

movement by cerebra-cerebellar communication loop. CF: Climbing fiber, BC: Bas-

ket cell, GO: Golgi cell, GR: Granule cell, MF: Mossy fiber, PC: Purkinje cell, PF: 

Parallel fiber, ST: Stellate cell, DE: Dentate nucleus, IO: Inferior olivary nucleus, 

PN: Pontine nuclei, RNp: Parvocellular red nucleus, VL: Ventrolateral nucleus of 

the thalamus. 
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Figure 4 .. 3: Proposed target-change experiment under normal and mirror-image co-

ordinate transformation which reveals reference coordinates in which climbing fiber 

responses are represented. 
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represent the movement trajectory error or the motor command error, whether the 

coordinate transformation is normal or mirror-image, and whether the second target 

presented is to the right or left of the first target; t1 < t2 or tl > t2. A and B show 

two different firing patterns of the climbing fibers. 

If the climbing-fiber response encodes the movement trajectory error, the complex-

spike patterns for two kinds of target change should be the same for the normal and 

the mirror-image coordinate transformation. On the other hand, if the command 

error is represented, the firing patterns should be inverted for the normal and the 

mirror-image conditions. 

command 

t1 < t2 
error 

t1 > 12 

B

A

 

~
~
 

trajectory error 

t1< 12 I n >t2 

一丁
Our prediction is as follows. Before the monkey learns the mirror-image con-

dition, the case for trajectory error will be observed, because the coordinate tt・ans-

formation mechanism dealing with the mirror-image condition still does not exist. 

But once the monkey does learn the mirror-image condition, while he is improving 

the skillfulness of his movement, the case for command error pattern must be ob-

served. Some part of the cerebral cortex, most likely the parietal lobe, transforms 

the error detected in the visual coordinates into muscle coordinates. Then, the motor 

command error is sent both to the cerebellum and the motor cortex. Burnod and Du-

fosse (1990) proposed an interesting model which might be related to this imaginary 

experiment. 

5. Spinocerebellum 

In this section, we propose models of the vermis and the intermediate part of the 

hemisphere based on the feedback-error-learning scheme for the closed-loop con-

trol system shown in Fig. 2 .. 2. In these models, the cerebellum provides an adaptive 

feedback controller. With learning capability realized by the long-term depression, 

the cerebellum learns to execute coordinative and predictive control of nonlinear 

controlled objects. This adaptive feedback controller is overlaid on the more fun-

damental feedback system in the spinal cord, the brain stem, and via the cerebral 

cortex. The two feedback controllers cooperate in the execution of movements. 

The efference copy of motor commands generated by the lower feedback controller 

is sent to the cerebellum by the climbing fiber system. The long-term depression 
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tries to decrease the activity of the climbing fiber system. Thus, as the learning 

proceeds, the lower feedback controller becomes less active, and the movement is 

mainly controlled by a sophisticated controller in the cerebellum. 

There are two compelling reasons to regard the spinocerebellum as the adap-

tive feedback controller. First, unlike the lateral cerebellum, it receives infonnation 

directly from the periphery. Second, the controlled object in posture control and 

locomotion is a physically unstable system. Thus, feedback control is essential. 

5.1 Vermis 

Figure 5 .. 1 shows a block diagram of adaptive posture control conducted by a corti-

conuclear microcomplex in the vermis of the cerebellum. Among several functional 

roles of the vermis in motor control, adaptive control of posture is chosen as a rep-

resentative example in Fig. 5 .. 1. Human control performance of posture is degraded 

when proprioceptive feedback information is injured. However, loss of certain in-

formation is compensated by using other sources of information (e.g. Romberg's 

sign). Nashner (1981) showed that adaptive modification of reflexes in posture con-

trol is severely impaired in patients with cerebellar disease. Thus, the cerebellum 

is assumed to be the site of adaptive control of posture. The vermis receives infor-

mation about the position, velocity and acceleration of the head and the torso from 

proprioceptors, visual sensors and the vestibular organ. Its output is directed mainly 

to the medial brain stem system and the axial regions of motor cortex. 

By computer simulation, Gomi and Kawato (1990) ascertained that the proposed 

scheme works well for controlling an inverted pendulum system, which is consid-

erect the simplest model of the trunk and legs. We found that an error in posture 

induced by physical perturbation (disturbance in Fig. 5 .. 1) decreased as the learn-

ing process proceeded. Ultimately, the behavior of the total system obeys the ideal 

response which is determined by the reference model embedded in the fundamental 

feedback controller. 
A schematic diagram of the neural circuits around the vermis is shown in Fig. 5 .. 2. 

Information about the state of the controlled object is sent to the Purkinje cells by 

the spinocerebellar tracts from the periphery. The inferior olive sends the efference 

copy of the activity of the premotor network while receiving information from the 

periphery (spino-olivo-cerebellar paths) and the cerebral cortex. The output from 

the microcomplex is sent to the spinal cord and the cerebral cortex from the fastigial 

nucleus. We propose that the loop SCT-parallel fiber-Purkinje cell-fastigial nucleus-

CRST/CVST forms an adaptive feedback controller. 
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Figure 5 .. 1: Block diagram of adaptive posture control by a corticonuclear complex 

in the vermis of the cerebellum. SRCT: spino-reticulo-cerebellar tract, DSCT: dorsal 

spinocerebellar tract, SOCPs: spino-olivo-cerebellar paths. 

5.2 Intermediate part of the hemisphere 

The model for the intennediate part of the hemisphere is more complicated than that 

of the vermis, but we propose a similar closed-loop model shown in Fig. 5 .. 3. 

Among many functional roles of the intennediate part in motor control, adap-

tive control of locomotion is chosen in Fig. 5 .. 3 as an interesting example. Neu-

ral oscillators generate a desired rhythmic movement pattern. Because the desired 

movement pattern is time varied, feedforward control is necessary to execute smooth 

movement. On the other hand, the controlled object is unstable, thus feedback con-

trol is also essential. Consequently, adaptive control of locomotion requires both 

feedforward-and feedback control. The intennediate part receives the parallel fiber 

inputs both from the periphery and the brain stem and satisfies input required to ex-

ecute simultaneous feedback and feedforward control. Udo and colleagues (1980) 

showed that cooling of the cerebellar intennediate cortex interferes with interlimb 

coordination in locomotion. Matsukawa and Udo (1985) found that complex spikes 

were frequently evoked by mechanical perturbations to the paw during locomotion 

of decerebrate cats. 

Theoretically, the most interesting and challenging problem is to set an appropri-
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Figure 5 .. 2: Schematic diagram of the neural circuits around the vermis of the cere-

bellum. SCT: Spinocerebellar tracts, CRST: Cerebelloreticulospinal tract, CVST: 

Cerebellovestibulospinal tract, SOCPs: Spino-olivo-cerebellar paths. FN: Fastigial 
nucleus. 
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Figure 5 .. 3: Block diagram of adaptive control of locomotion by a corticonuclear 

microcomplex in the intermediate part of the hemisphere of the cerebellum. 

ate inverse reference model in the feedback controller at the spinal-and brain stem 

level. We have little experience in designing an inverse reference model for a multi-

degrees-of-freedom system in a very dynamic situation like locomotion. However, 

we expect that some of the known interlimb reflexes should provide part of the ref-

erence model. 

A schematic diagram of the neural circuit around the intermediate part is shown 

in Fig. 5 . .4. The spinocerebellar tracts convey feedback information from the pe-

riphery while the pontine nuclei carry feedforward information from the cerebral 

cortex to parallel fiber inputs. The inferior olive conveys the premotor activity as 

climbing fiber inputs. The output from the microcomplex is sent to the red nucleus 

as well as the motor cortex from the interpositus nucleus. We propose that a mi-

crozone in the intermediate part executes simultaneous feedback and feedforward 

adaptive control. 

6. Discussion 

We showed that functional roles of different regions of the cerebellum can be coher-

ently understood based on the feedback-error-learning scheme. The most important 

assumption here is that climbing fiber responses represent efference copy of motor 
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Figure 5 .. 4: Schematic diagram of neural circuit around the intermediate part of the 

hemisphere of the cerebellum. RST: Rubrospinal tract, IP: Interpositus nucleus, PN: 

Pontine nuclei, RN: Red nucleus. 
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commands generated by premotor networks. Thus, climbing fiber responses must 

possess magnitude information and direction (sign) information. This was well es-

tablished for the visual climbing fiber responses of the vestibulocerebellum. Firing 

frequencies of the visual climbing fiber change with the velocity of the retinal slip 

(Simpson & Alley, 1974). Furthermore, they were lower than the spontaneous level 

for the visual stimuli whose direction was opposite that of the optimum direction. 

However, we still do not have definite experimental data about information repre-

sented by the climbing fiber responses in other regions of the cerebellum. 

Houk, Barto and colleagues (1990, 1991) proposed a quite comprehensive and 

attractive model of the cerebellum based on anatomical and physiological knowl-

edge. Computationally, their scheme is based on reward-penalty learning (Barto, 

Sutton, Brouwer, 1981). In this model, the long-term depression of the Purkinje 

cells is assumed to provide the computational mechanism for the associative search. 

Therefore, the climbing fiber responses are assumed to give a "one-sided penalty 

signal," such as a somatic event detector. In this view, the all-or-nothing (binary) 

nature of the climbing fiber responses is emphasized, and it is assumed that direc-

tional information is not involved. These assumptions are in sharp contrast to ours. 

We have confidence that ours are correct for the vestibulo-cerebellum, but the real 

question is which is more appropriate for other regions of the cerebellum (vermis, 

intermediate part of the hemisphere, lateral part of the hemisphere). 

The range of firing frequencies of the climbing fiber is unusually low (the maxi-

mum is 4 pulses/sec and the spontaneous level is about 1 pulse/sec). This is usually 

used to support the O and 1 nature of the information conveyed. However, this is not 

true. Because the long-term depression has a time constant of about 1 hour, even a 

low firing frequency can be integrated to give analog information (14,400 pulses/hr 

to 3,600 pulses/hr). If the firing frequency is lower than the spontaneous level, it 

gives direction (negative) information. 

The non-sensory nature of the climbing fiber responses was reported (Gellman, 

Gibson, Houk, 1985). Some climbing fibers are activated by paw touch induced 

by forced movements. However, the identical stimulus does not induce firing of 

the climbing fibers when paw touch is induced by active movements. This is well 

explained by our model based on feedback-error-learning. If some sensory events 

are expected based on desired movement patterns, no extra activity is generated by 

the premotor networks. Thus, climbing fibers are not activated. On the other hand, 

when sensory events are unexpectedly detected, the premotor networks generate 

motor activity to deal with them, following which, the climbing fibers are activated. 

We need to wait for new experimental data such as that proposed in Fig. 4 .. 3 

before we form firm conclusions regarding information represented by the climbing 
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fibers. Meanwhile, we are very much interested in integrating our theory and Houk 

and Barto's in various respects. 
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