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Abstract

Several auditory spectrograms based on the adaptive Q
cochlear filter and its relatives -are compared in speaker
dependent HMM phoneme recogniﬁon tests using clean speech, as
well as speech degraded by adding pink noise. These
spectrograms are created using a filter bank, an inner hair cell
(IHC) model and a lateral inhibition (LINH) circuit, in different
combinations. Eight different filter banks with three different
types of filters are prepared: (1) a simple band pass filter with
Q=4.5 and 30, (2) a conventional fixed Q cochlear filter with Q=4.5
and 30, and (3) an adaptive Q cochlear filter with feedback
/feedforward control’ with a short/long adaptation time constant.
Each filter bank is composed of 55 channel filters spaced in 1/3
Bark increments and spanning the frequency range from 1 to 18.7
Bark. The IHC model involves a saturated half wave rectifier and
a short term adaptation circuit. The recognition task is to classify
input tokens into 18 phoneme categories using 5,788 training
tokens and 5,773 testing tokens. Results are as follows; (1) The
adaptive Q cochlear filter with LINH gives better recognition
performance than the other types of filter banks in all
training/tes_ting conditions. (2) The LINH effectively improvés
recognition performance. (3) The IHC model produces no benefit

even for the noisy data set.



1. Introduction

There have been many attempts to build an auditory model
that simulates the signal processing which occurs in the auditory
periphery. One purpose of such modeling is to obtain an internal
speech spectrum representation or its equivalent as a model
output, then use the internal representation in speech science or
in the speech engineering fields. In particular, applications of an
auditory model for speech recognition front-ends have been
attracting a great deal of interest. It has been believed that
speech recognition performance can be improved by r1eplacing a
traditional front-end with an auditory peripheral model. The
underlying assumption is that if a model could be designed
properly, it would generate a more useful and efficient
representation of the speech spectrum compared to traditional
physical spectrum representations.

From this viewpoint, several speech recognition experiments
using auditory front-ends have been reported. Hunt er al. (1986,
1988), Cohen (1989) and Meng et al. (190) showed that their
auditory front-end outperformed a traditional front-end.
However, other studies do not always show an auditory front-end
to be superior to a traditional front-end. Some auditory front-
ends are superior only for processing speech degraded by noise
(Ghitza, 1988; Hunt et al., 1986), but many show little, if any,
superiority in processing clean speech (Zwicker et al., 1979;
Blomberg et al.,, 1982, 1984; Hamada et al., 1989; Patterson et al.,
1989; Hirahara, 1990; Kajita et al. 1991). Thus, this assumption
has not yet been widely accepted in the field of automatic speech

recognition.



We have also been developing an appropriate auditory model
not only for a speech recognition system front-end but also for a
general purpose sound spectrum analyzer in a speech perception
study. As the first step, we developed an adaptive Q cochlear
filter bank, which functionally simulates the level—dependent
filtering characteristics of the basilar membrane system (Hirahara
et al., 1989, 1991). The output spectrogram of this adaptive Q
filter bank seems to be useful as a characteristic vector for a
speech recognition system. This is because speech cues are very
well represented on the output spectrogram, even when their
physical energy is low.

In this paper, several auditory spectrograms generated by this
adaptive Q cochlear filter and its relatives are compared in
speaker dependent HMM phoneme recognition tests using clean
speech, as well as speech degraded by adding pink noise. The
main purpose of the work is to evaluate the capacity of the
adaptive Q cochlear filter bank as a front-end for an HMM
phoneme recognition system. Further, based on the experiment
results, we discuss whether an auditory front-end will pay off in

automatic speech recognition or not.

2. An Adaptive Q Cochlear Filter

An adaptive Q cochlear filter (AQF) is a computational
nonlinear filter which functionally simulates three level-
dependent filtering characteristics of the basilar membrane
vibrating system in the cochlea: level-dependent frequency

selectivity, the level-dependent nonlinear reduction of the



relative gain at the resonance frequency and the level-dependent

resonance frequency shift (Johnstone et al., 1986).

As shown in Fig.l, the adaptive Q cochlear filter consists of
three parts: (1) cascaded second order notch filters (NOTCH), (2).
second-order band pass filters (BPF) connected to each NOTCH
output and (3) adaptive Q circuits (AQ) connected to each BPF
output. In order to simulate the nonlinearity of the basilar
membrane system mentioned above, the adaptive Q circuit in
Fig.2 is introduced. The adaptive Q circuit consists of a second-
order low-pass filter (LPF) of which Q is determined by a Q-
decision circuit.

First, when the gain at DC is set at unity, the transfer

function of the second order low-pass function LPF(s) is given by

w2

LPE(s) = [1]

s2+ (0/Q;)s + 2

where ®; and Q; are the pole frequency in radian and the Q

(quality factor) at the pole of the LPF. Its magnitude frequency

response

ILPFGw)l = Q [2]
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is shown in Fig.2 for four Q; values. The maximum value of ILPF(jw)!

is
Gmax = [LPF(jomax)| = % [3]
\ 1-1/(4QP)
where

Omax = {1-1/2Q2) ) [4]

When Q, is large, the formulae [3] and [4] show that the second
order low-pass function reaches a maximum gain Q; at W=w®;. At
this time, its transfer characteristics are those of a low-pass filter
with a single resonance at w;and with Q of the resonance nearly
equal to Q,. Then, the decrease in Q; brings about the reduction of

G max, the lower shift of ® and the Q decrease simultaneously.

max
When Qy is below 1N 2, the transfer characteristics become those

of a simple low-pass filter, where ®; and Q; are not significant.
This means that we can control the maximum gain, the resonance
frequency and the Q, simultaneously by choosing adequate values
of Q.

Next, let us consider a Q-decision circuit which calculates
Q(1), the Q of the second order low-pass function at time frame t,
from controlling signal p(t) in every time frame using the

following formulae.

~ Qmax p(t) <pmin
Qy(t) = (Qmax-Qumin ){1-p(t) ) +Qmin Pmin < P(t) < pmax [5]
Qmin Pmax < p(t)
where ‘



p(t) = (p(t) - pmin)/(Pmax - pmin) [6]

While Qmax, Qmin, pmax and pmin are constants, p(t) is the logarithmic

power of the controlling signal at time frame t. p(t) is given by

p() = log([ Iy(viaw) 7

where T is a conétant which determines the renewal period of
Qi(t). The input-output function of the Q-decision circuitis shown
in Fig.2. This Q-decision circuit generates the largest Q; when p(t)
is smaller than pmin and the smallest Q; when p(t) is greater than
pmax. When p(t) is between pmin and pmax, an intermediate Q
value is generated iﬁversely proportional to p(t). Two choices are
available for the control signal of this Q-decision circuit. For
féedforward control, the LPF input, i.e. the BPF output, is used as
the control signal. For the feedback control, the LPF output itself
is fed back to the Q-decision circuit input.

A conventional fixed Q cochlear filter is composed of a cascaded
NOTCH-BPF combination (Lyon, 1982), which has asymmetrical
filter characteristics: A steep high cutoff and a gradual tail at
lower frequencies. Adaptive Q circuits in addition to this fixed Q
cochlear filter realize the three level-dependent filtering
characteristics: level-dependent frequency selectivity, the level-
dependent nonlinear reduction of the relative gain at the
resonance frequency and level-dependent resonance frequency
shift. Although the advantage of the level-dependent resonance
frequency shift for an auditory spectral analyzer is not yet clear,
the other two level-dependent characteristics, the Q and gain

adaptation, cause the system to act as a rational spectral analyzer.



That is, the signal-to-noise ratio for weak components is improved
by increasing not only the gain but also the resonance Q of the
channel. Thus, weak consonants "and higher formants are
enhanced and the spectrograms obtained by the AQ filter are
much more distinct than spectrograms obtained by the
conventional fixed Q cochlear filters, or DFT spectrograms. In
addition, the point where the spectral level changes abruptly is
also enhanced by the AQ filter because of the time lag for the Q
adaptation. These advantages of the adaptive Q type cochlear
filter seem to be promising for the front-end of a speech

recognition system.

3. Phoneme Recognition Experiments
3.1 Speech Data

The phoneme tokens used in the experiments are drawn from
a large ATR database of 5,240 common Japanese words, which
were uttered in isolation by a male professional announcer (MAU)
(Kurematsu et al., 1990). All utterances were recorded in a
soundproof room and digitized at a 12kHz sampling rate with
16bit accuracy. The database was split into a training set and a
testing set of 2,620 utterances each, from which phoneme tokens
of 170ms duration were then extracted using manually applied
acoustic-phonetic labels.

Each token includes one of the eighteen Japanese consonants
/o, 1d/, Igl, Ipl, It, /K[, [m/, /nf, [N/, [s/, [sh/, /b, [z],
/ch/,./ts/, [r], /w/ or [y/. The condition of each token extraction
differs among consonant categories. With regard to the voiced

stops /b, d, g/, the beginning point of the token extraction was



80ms before the succeeding vowel onset. With regard to the
voiceless stops /p, t, k/, the beginning point of the token
extraction was 40ms before the stop release. For other consonants,
the beginning point of the token extraction was 120ms before the
consonant-vowel boundary.

Finally, 5,788 tokens were prepared for the training set and
5,773 tokens were prepared for the test set. The number of

tokens for each phoneme category is shown in Table 1.

With regard to noisy data sets, 170ms pink noise (20Hz to
20kHz) data sampled at 12kHz with 16 bit accuracy was added to
each clean token. This pink noise was generated by a signal
generator (B&K 1049). The average signal-to-noise ratio for each
token, i.e. total energy of a token over the total ehergy of the
noise, was approximately 6dB to 3dB.

3.2 Front-ends

Figure 3 shows the block diagram of the front-ends used in the
experiments. The front-end consists of four stages: a filter bank,
an inner hair cell model (IHC), a temporal and channel integrator
and a lateral inhibition circuit (LINH). Different combinations of
filter banks, an inner hair cell model and a lateral inhibition

circuit were examined.



3.2.1 Filter banks

Eight different filter banks of three different types were
prepared. The first two are simple second-order band pass filter
banks whose Q (Qb) is 4.5 or 30 (BPF4.5 and BPF30). The next two
are cascade/parallel type fixed Q cochlear filter banks whose Qb is
45 or 30 (FQF4.5 and FQF30). The last four are adaptive Q
cochlear filter banks with feedback/feedforward control with a
short (T=2ms) and a long (T=10ms) adaptation time constant
(AQFB2ms, AQFB10ms, AQFF2ms and AQFF10ms). Each filter bank
was composed of 55 channel filters spaced at 1/3 Bark intervals
and spanning the frequency rahge from 1 to 18.67 Bark (100Hz to
5,114Hz). Each filters' frequency responses in 1 Bark intervals are

shown in Fig. 4.

It should be noted that the BPF4.5 and BPF30 are subsystems
of the FQF4.5 and FQF30, respec_tively. Thus, the effect of the
asymmetrical frequency response of the'fixed Q cochlear filter,
which reflects the frequency masking characteristics, is revealed
by comparing the BPFs and FQFs. On the other hand, all AQFs are
based on the FQF4.5, and the Q of the adaptive Q circuits was
determined to vary from 5.0 to 30.0. Then, the actual Q of the
AQFs varies from 7.0 to 25. Thus, the advantage of adaptive Q
filtering can be seen by comparing the FQFs and AQFs.



3.2.2 Inner Hair Cell Model (IHC)

The inner hair cell model (IHC) that follows the filter bank
stage consists of the saturated half-wave rectifier and the short
term adaptation circuit proposed by Seneff (1988).

With regard to the saturated half-wave rectifier, it is defined

mathematically as follows:

Y;(t) 1 + A-tan -1(B.y;(t)) y;(t) > 0

exp(A-B-y;(t)) yi() = 0 [8]

where, Y;(t) is the rectifier output of the i-th chanmnel, yj(t) is the
filter output of the i-th channel, A and B are constants of gain
factors. While Seneff chose A=10 and B=65, we set A=10 and B=3
because of the level matching requirement between the filter
bank and the rectifier stage. With regard to the short term
adaptation circuit, the original parameter values were used.

The output of this IHC model is regarded as the equivalent of
the firing rate at the primary auditory nerve. Fig.5 shows the
block diagram of the IHC model and the input/output signals of

the model.

3.2.3 Temporal Integrator and Channel Integrafor
Given the limitation of the HMM recognition system we used,
temporal and frequency resolution of either the filter bank output

or the THC model output had to be reduced. First, each channel
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output was averaged along the time axis by using a 10ms non-
overlapped rectangular window. Next, the number of channels
was reduced to 16 by combining four (below 10 Bark) or three
(above 10 Bark) adjacent channels. Finally, all components were
transformed into logarithmic values. This process is defined

mathematically as follows:

1
Yi(T) = logig 2, 7 2IYi(0) [9]

t

where N=120 for 12kHz sampling rate.

Thus, 170ms tokens were converted into spectrograms
containing 16 channels of logarithmic energies and 17 time
frames of 10ms each.

In order to adjust the HMM system input vector size to that of
DFT front-end, we used only 240 (16 channels by 15 time frames)
dimensional vectors for each token by discarding the first and the
last time frame data.

3.2.4 Lateral Inhibition Circuit (LINH)
The lateral inhibition process was performed on the 16 channel

by 15 time frame vectors. The j-th spectrum at time frame T

transformed by the lateral inhibition process Y';(T) is obtained by

a simple convolution of the input j-th component Y;(T) and the

lateral inhibition coefficients Ax.

Y'{(T) = logyg XAk Y 4 (T) [10]

k=-n
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where n=3, A0=1.0, A+1=0.6 and A+2=A2#3=-0.3. This lateral
inhibition enhances spectral contrast along the frequency axis.

3.2.5 DFT Front-end

Conventional DFT based mel scale spectrograms were prepared
for comparison. The input token was 20ms-Hamming windowed
and a 256 point FFT computed every 5Sms. Then, a 128 channel by
31 time frame DFT spectrum was obtained from a 170ms token.
This DFT spectrum was then transformed into 16 mel scale
coefficients. This transformation was accomplished by adding the
DFT power spectrum components in each mel scale energy band,
where adjacent coefficients in frequency overlap by one spectral
sample and are smoothed by reducing the shared sample by 50
percent (Waibel et al., 1989). Adjacent coefficients in time were
collapsed for further data reduction resulting in an overall 10ms
frame rate. Discarding the first frame of the raw DFT spectrum,
we then obtained 240 dimensional spectrum vectors of 16
channels by 15 time frames. Finally, all coefficients were

transformed into logarithmic values.

Figure 6(a) shows 16 channel by 15 frame feature vectors of
- each front-end for a token /b/ (/akubi/; yawing). The formant
structures of /bi/ are better represented on the vectors of the IHC
or AQF than those of 'other front-ends. Figure 6(b) shows feature
vectors when the LINH. was applied. It is clear that the LINH

enhances spectral contrast.
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3.3 HMM Phoneme Recognition System

Figure 7 shows the HMM phoneme recognition system used in
the experiment. In the system, K-means clustering was used to
make a codebook. The input vectors for the clustering procedure
were a 16 channel by 7 frame partial vector. When this 7-frame
vector was used, nine partial vectors were obtained from one
token (16 channels by 15 time frames). In the experiments, 20

codebook vectors were assigned for each category.

A phoneme model with four states and six transitions was used
in the system. The transition probabilities of the HMMs ajj are all
initialized so as to have equal values. The initial values bix are set,
for each code k, at the number of observations of code k, divided
by the number of observatioﬁs of all codes. The Baum-Welch
algorithm, based upon maximum likelihood estimation, is used to
train the HMMs. The number of iterations was set at seven. A
floor value of 10-6 was set on the output probabilities to avoid
errors caused by zero probabilities.

The recognition task was to classify input tokens into 18

phoneme categories regardless of the following vowel.

4, Results

The results for the experiments are shown in Fig.8(a)-(d). In
the figures, the abscissa represents front-end type and the
ord‘inate is the recognition performance expressed in percent. The

gray bars represent performance without LINH. The white bars
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represent improved performance due to LINH. The black lines in
the gray bars represent degraded performance due to LINH.

It should be noted that these results were obtained with
exactly the same back-end conditions. That is, the very same
tokens were chosen as an initial set for K-means clustering in
each front-end. When different initial token set were chosen to
make codebooks for training tokens, the performahce was
changed slightly. As for the DFT front-end, the averaged
performance was 9'1.5% and it's standard deviation was 0.85% for
ten tests with ten different initial token sets. As for the
AQFF10ms front-end, averaged performance was 90.1% and its

standard deviation was 0.44%.

Let us look first at the relative recognition performance when
the HMM system was trained and tested on clean data (C_C).
Among the BPFs and the FQFs, the Qb=30 system gave better
performance than the Qb=4.5 system. When Qb was the same, the
FQF outperformed the BPF. The AQFs gave better performance
than the FQF regardless of either the Q control method or the
adaptation time T. The IHC model used with AQFF10ms degraded
the performance. On the other hand, the lateral inhibition process
effectively increased performance. The best performance was
92.4% achieved by the AQFF10ms with LINH.

Second, when the HMM system was trained on clean data and
tested with noisy data (C_N), performance deteriorated from 20.9

to 24.9% compared to when the HMM system was trained and
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tested on clean data. The ranking of the nine front-ends is
essentially the same as when clean data was used for the test set.
The IHC model did not contribute to raising recognition
performance. In contrast, the LINH effectively increased
recognition performance in most front-ends, but did not work for
AQFB, IHC or DFT. The best performance was 70.7% achieved by
the AQFF10ms with LINH.

Third, when the HMM system was trained and tested on noisy
data (N_N), performance deteriorated from 12.3 to 16.6%
compared to when the HMM system was trained and tested on
clean data. Among the BPFs and FQFs, a larger Qb gave higher
recognition performdnce. The AQFFs outperformed the BPFs- and
FQFs. However, the AQFBs were inferior to the FQFs and the
" BPF30. The performance of the ITHC model .was the worst. The
effect of the LINH was not particularly large compared to other
training/testing conditions. The best performance was 76.3%
achieved by the AQFF10ms with LINH.

Fourth, when the HMM system was trained on noisy data and
tested on clean data (N_C), performance deteriorated from 8.6% to
13.4% compared to when the HMM system was trained and tested
on clean data. When Qb was 4.5, the FQF gave performed better
than the BPF. Howéver, the result was the opposite when Qb was
set at 30. Ambng the AQFs, shorter adaptation time 7T and
feedforward type Q control improved performance. The IHC
model degraded the performance. The LINH process improved the
performance in most front-ends. The best performance was 82.5%

achieved by the DFT without LINH.




S  Discussions
5.1 Effect of the filter shape

Filter shape influences recognition performance. It is obvious
that a larger Qb gives better recognition performance among the
BPFs or FQFs regardless of the training and testing conditions. The
FQF generally outperforms the BPF when Qb is the same. Since the
FQF has sharper cutoff characteristics at higher frequencies than
the BPF, the -3dB bandwidth of the BPF and FQF is nearly the
same, but the -20dB bandwidth, for example, of the FQF is
narrower than that of the BPF. Thus, these two results imply that
the sharper filter gives better results.

5.2 Effect of the .adaptive Q filter

Since the actual Q of the adaptive Q filters varies from 7.0 to
25.0 according to the signal level, the advantage of the AQFs is
clarified by comparing the performance of the AQFs with that of
the FQF4.5 and FQFBO.. If it were only the filter shape which
contributed to the recognition performance, the AQFs'
performance should fall between those of the FQF4.5 and the
FQF30. Nevertheless, the results show that the adaptive Q cochlear
filters outperform ot only the FQF4.5 but also the FQF30. Thus,
the advantage of .the AQFs is not only based on the filter shape
but comes from the .level—dependent characteristics of the
adaptive Q filtering.

With regard to the Q control method, the feedforward control
always gives better results than the feedback control. In
particular, the difference between the two control methods is
obvious when dealing with noisy data. With regard to the
adaptation time constant T, a shorter T gives better results except

when the HMM system was trained on clean data and tested on
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noisy data. However, when the LINH is applied, a longer T gives
better performance.
5.3 Effect of the LINH

The lateral inhibition process effectively improves the
recognition performance in most cases. When the HMM system is
trained and tested on clean data, the LINH improves performance
from 0.6% to 2.9%. When the HMM system is trained and tested
on noisy data, the performance ranges from -1.8% worse to 1.6%
better. The LINH degrades the performance of the AQFBs and the
DFT. When the training and testing conditions are asymmetrical,
performance improvement feaches 4.2%. In particular, the LINH
improves the AQFFs' and the FQFs' performance considerably. By
way of contrast, it does not work for the DFT.

5.4 Effect of the IHC model

The use of the IHC model is disappointing. Results show that
the THC model used with the AQFF2ms degrades performance not
only for the clean data but also for the noisy data. We expected
the use of the IHC model to bring about better performance,
because the acoustic events of speech are well represented
visually on the IHC model output. However, the result was the
opposite.

One possible reason is that the IHC model we used is not
properly designed. Another possible reason is that the IHC model
outputs are adequate for our spectrogram reading knowledge but
inadequate for the HMM to classify input tokens. It should be
noted that this temporal contrast enhancement is obtained as a
result of the level shift threshold mechanism of the short term

adaptation circuit. That is, the spectrogram enhancement is



accomplished either by emphasizing certain components or
eliminating certain components. Thus, this elimination might lose
some information required by the HMM. It is interesting that the
DFT front-end gives good performance where no component is
emphasized but all power spectrum information is preserved.

5.5 Comparison with the DFT front-end

The DFT front-end works surprisingly well for any HMM
training/testing conditions. Without the LINH, the DFT front-end
always gives the best performance. Furthermore, even when the
AQ filter with LINH outperformed the DFT front-end, performance
difference between the the two front-ends is less than 1.1%.

The frequency résolution of the DFT front-end original output
(128 channels) is about double that of other front-ends (55
channels). Furthermore, the actual analysis length is 165ms for
the DFT front-end while it is 150ms for the other front-end. These
differences might enhance the performance of the DFT front-end.
Hence, in a strict sense, it is not a fair comparison. However, we
should say that the benefit of using the auditory front-ends is

small under the experiment conditions we used.

5.6 Whether an auditory front-end?

Since the human auditory system is an excellent speech
recognizer, it is worthwhile to consider how the human auditory
system deals with speech. Nevertheless, it should be noted that
the  actual auditory periphery is designed for the actual higher
level processes of the auditory system. Thus, the output of a
properly designed auditory model will be suitable for a human

pattern classifier or its equivalent model. However, it is obvious
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that the modern stochastic pattern classifiers such as HMM are
not the model of how human beings classify speech patterns.
Therefore, in order to judge whether a properly designed
auditory model could generate a useful representation of speech
for a speech recognition system or not, it is necessary to repeat
the recognition experiment using an auditory front-end and a

feature-based pattern classifier.

In addition, it is worthwhile to test a compbsite phoneme
recognition system 'as shown in Fig. 9. The composite system
consists of a time varying front-end, a time varying feature
transformer and a pattern classifier. The front-end and feature
transformer - characteristics are controlled by the recognition
result so as to generate a mdre efficient feature vector for the
pattern classifier. The feature transformer plays the role of an
"impedance matching section" between a front-end and the back-
end used in the system. An auditory model such as the adaptive Q
cochlear filter is suitable for the front-end and an artificial neural
network such as a spatio-temporal lateral inhibition circuit is
suitéble for the feature transformer, because their characteristics

are easily controlled. These will be the subject of future studies.

6 ~Summary and Conclusion
In this paper, we have examined several auditory
spectrograms in speaker dependent HMM phoneme recognition

tests. Results are summarized as follows:



(1) Among the simple second-order band-pass filter banks or the
fixed Q cochlear filter banks, the Qb=30 system gives higher
performance than the Qb=4.5 system.

(2) When Qb is the same, the fixed Q cochlear filter banks give
higher performance than the second order band-pass filter
banks.

(3) The adaptive Q cochlear filter bank with feedforward control
outperforms traditional filter banks whose filtering
characteristics are fixed.

(4) A lateral inhibition process applied on the logarithmic power
spectrum improves recognition performance. In particular, the
combination of the feedforward type adaptive Q filter and the
lateral inhibition process provides the highest performance in
‘most training/testing conditions.

(5) In contrast, the inner hair cell model used in the experiment
degrades performance. |

(6) Without the lateral inhibition, the DFT front-end always gives
the best performance. Even when the adaptive Q cochlear filter
with lateral inhibition outperformed the DFT front-end,
performance difference between the two is less than 1.1%.
From these results, we conclude that the adaptive Q cochlear

filter followed by the lateral inhibition process works well for an

HMM phoneme recognition system. However, we should say that

the benefit of using this auditory front-end is small under the

experiment conditions we used. More systematic application
research, such as recognition experiments testing distance
measure and recognition methods, are needed to judge whether

an auditory front-end pays off or not. In particular, it is necessary
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to test the combination of an auditory front-end and a feature-

based phoneme classifier.
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Figure captions

Table 1 Number of tokens used in- the experiment.

Figure 1 Block diagram of a cascade/parallel type adaptive Q
cochlear filter bank. The adaptive Q cochlear filter consists
of three parts: (1) cascaded second order notch filters
(NOTCH), (2) second-order band pass filters (BPF) connected
to each NOTCH output and (3) adaptive Q circuits (AQ)
connected to each BPF output. This adaptive Q cochlear filter
functionally simulates three level-dependent filtering
characteristics *of the basilar membrane vibrating system in
the cochlea.

Figure 2 Block diagram of the adaptive Q circuit. Frequency

" responses of a second-order low-pass-filter (LPF) at four Q
values (left) and input-output relationship of a Q-decision
circuit, which calculates the second-order LPF's Q from
control signal by formulae (5) (6) and (7) (right).

Figure 3 Block diagram of the front-ends wused in the
experiments.

Figure 4 Filter responses of three types of filter-banks. In each
panel, filter responses are drawn in 1 Bark intervals, i.e. in
3 channel intervals. BPF4.5 and BPF30 show the responses
of the second-order band-pass-filter whose Q (Qp) is 4.5 and

30. FQF4.5 and FQF30 show the responses of the
. cascade/parallel type fixed Q cochlear filter bank whose Qp

is 4.5 and 30. AQF minimum Q and AQF maximum Q show
the adaptive Q cochlear filter responses when Q of the

adaptive Q circuit of all channel is set at minimum value
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(Q1=3.0) and maximum value (Qy=45). Qp of AQFs is set at

4.5.

Figure 5 Block diagram of the inner hair cell model (IHC) which
consists of a half-wave rectifier (HWR) and a short term
adaptation circuit (STA) proposed by Seneff (1988). Input
for the HWR, i.e. filter output, HWR output and STA output
of 6th, 33rd and 55th channel for one second of speech data
are also depicted.

Figure 6 (a) 240 dimensional feature vectors (16 channels by
15 frames) for a token /b/ (/akubi/; yawing) obtained by
each front-end. (b) The same feature vectors obtained by
each front-end' with lateral inhibition circuit (LINH).

Figure 7 (a) Block diagram of the HMM phoneme recognition
system and (b) a phoneme model structure. K-means
clustering was used to make a codebook, where input
vectors for the clustering procedure were a 16 channel by 7
frame.partial vector.

Figure 8 The results for the phoneme recognition experiments:
The abscissa represents the front-end type and the ordinate
represents the recognition performance expressed in
percent. The gray bars represent performance without
LINH. The white bars represent improved performance due
to LINH. The heavy black lines in the gray bars represent
degraded performance due to LINH. BPFs are the simple
second-order band-pass filter, FQFs are the fixed Q cochlear
filter, AQFFs are the adaptive Q cochlear filter with feed-

forward Q control, AQFBs are adaptive Q cochlear filter with
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feedback Q control, THC is the AQFF2ms used with IHC
model and DFT is the DFT based mel scale filter.

Figure 9 Concept of a composite - phoneme recognition system
which consists of a time varying front-end, a time varying
feature transformer and a pattern classifier. The front-end
and feature transformer characteristics are controlled by
the recognition result so as to generate a more efficient
feature vector for the pattern classifier. An auditory model
such as the adaptive Q cochlear filter is suitable for the
front-end and a spatio-temporal lateral inhibition circuit is
suitable for the feature transformer. The feature
transformer plays the role of an "impedance matching
section" between the front-end and the back-end used in

‘the system.
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T Hirahara & H.Twam) do |

)
|

Token Training Test Token  Training Test
/ b/ 218 227 [ s/ 475 538
/[ d/ 202 179 / sh / 186 177
/gl 260 252 /[ h/ 214 207
/p/ 32 15 / z ] 115 - 115
/ t ] 425 440 / ch / 79 71
[ k/ 1152 1164 / ts / 212 177
/[ m [/ 471 481 / 1/ 754 722
/[ n/ 260 265 fw [ 71 g1
/[ N/ 503 488 [y [/ 159 174

Table 1  Number of tokens used in the experiment
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