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Abstract 

Several auditory spectrograms based on the adaptive Q 

cochlear filter and its relatives・are compared in speaker 

dependent HMM phoneme recognition tests using clean speech, as 

well as speech degraded by adding pink noise. These 

spectrograms are created using a filter bank, an inner hair cell 

(IHC) model and a lateral inhibition (LINH) circuit, in different 

combinations. Eight different filter banks with three different 

types of filters are prepared: (1) a simple band pass filter with 

Q=4.5 and 30, (2) a conventional fixed Q cochlear filter with Q=4.5 

and 30, and (3) an adaptive Q cochlear filter with feedback 

/feedforward control'with a short/long adaptation time constant. 

Each filter bank is composed of 55 channel filters spaced in 1/3 

Bark increments and spanning the frequency range from 1 to 18.7 

Bark. The IHC model involves a saturated half wave rectifier and 

a short term adaptation circuit. The recognition task is to classify 

input tokens into 18 phoneme categories using 5,788 training 

tokens and 5,773 testing tokens. Results are as follows; (1) The 

adaptive Q cochlear filter with LINH gives better recognition 

performance than the other types of filter banks in all 

training/testing conditions. (2) The LINH effectively improves 

recognition performance. (3) The IHC model produces no benefit 

even for the noisy data set. 
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1. Introduction 

There have been many attempts to build an auditory model 

that simulates the signal processing which occurs in the auditory 

periphery. One purpose of such modeling is to obtain an internal 

speech spectrum representation or its equivalent as a model 

output, then use the internal representation in speech science or 

in the speech engineering fields. In particular, applications of an 

auditory model for speech recognition front-ends have been 

attracting_ a great deal of interest. It has been believed that 

speech recognition performance can be improved by replacing a 

traditional front-end with an auditory peripheral model. The 

underlying 

properly, 

assumption is that if a model could be designed 

it would generate a more useful and efficient 

representation of the speech spectrum compared to traditional 

physical spectrum representations. 

From this viewpoint, several speech recognition experiments 

using auditory front-ends have been reported. Hunt et al. (1986, 

1988), Cohen (1989) and Meng et al. (190) showed that their 

auditory front-end . outperformed a traditional front-end. 

However, other studies do not always show an auditory front-end 

to be superior to a traditional front-end. Some auditory front-

ends are superior only for processing speech degraded by noise 

(Ghitza, 1988; Hunt et al., 1986), but many show little, if any, 

superiority in processing clean speech (Zwicker et al., 1979; 

Blomberg et al., 1982, 1984; Hamada et al., 1989; Patterson et al., 

1989; Hirahara, 1990; Kajita et al. 1991). Thus, this assumption 

has not yet been widely accepted in the field of automatic speech 

recognition. 

2
 



We have also been developing an appropriate auditory model 

not only for a speech recognition system front-end but also for a 

general purpose sound spectrum analyzer in a speech perception 

study. As the first step, we developed an adaptive Q cochlear 

filter bank, which functionally simulates the level-dependent 

filtering characteristics of the basilar membrane system (Hirahara 

et al., 1989, 1991). The output spectrogram of this adaptive Q 

filter bank seems to be useful as a characteristic vector for a 

speech recognition system. This is because speech cues are very 

well represented on the output spectrogram, even when their 

physical energy is low. 

In this paper, several auditory spectrograms generated by this 

adaptive Q cochlear filter and its relatives are compared m 

speaker dependent HMM phoneme recognition tests using clean 

speech, as well as speech degraded by adding pink noise. The 

mam purpose of the work is to evaluate the capacity of the 

adaptive Q cochlear filter bank as a front-end for an HMM 

phoneme recognition system. Further, based on the experiment 

results, we discuss whether an auditory front-end will pay off m 

automatic speech recognition or not. 

2. An Adaptive Q Cochlear Filter 

An adaptive Q cochlear filter (AQF) is a computational 

nonlinear filter which functionally simulates three level-

dependent filtering characteristics of the basilar membrane 

vibrating system in the cochlea: level-dependent frequency 

selectivity, the level-dependent nonlinear reduction of the 
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relative gain at the resonance frequency and the level-dependent 

resonance frequency shift (Johnstone et al., 1986). 

Figure 1 

As shown in Fig.1, the adaptive Q cochlear filter consists of 

three parts: (1) cascaded second order notch filters (NOTCH), (2). 

second-order band pass filters (BPF) connected to each NOTCH 

output and (3) adaptive Q circuits (AQ) connected to each BPF 

output. In order to simulate the nonlinearity of the basilar 

membrane system mentioned . above, the adaptive Q circuit in 

Fig.2 is introduced. ・The adaptive Q circuit consists of a second-

order low-pass filter (LPF) of which Q is determined by a Q-

decision circuit. 

Figure 2 

First, when the gain at DC is set at unity, the transfer 

function of the second order low-pass function LPF(s) is given by 

LPF(s) = CD1 
2 

s2 + (wifQ1)s + CD仔
[1] 

where ro 1 and Q1 are the pole frequency in radian and the Q 

(quality factor) at the pole of the LPF. Its magnitude frequency 

response 

ILPF(jco)I = 
Q1 

心戸{1-(co/叫）平+(co/研）2

[2] 
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is shown in Fig.2 for four Q1 values. The maximum value of ILPFUw)I 

IS 

Gmax=ILPF⑯ max)I = 
Qi 

石可忘

where 

[3] 

(J)max = { 1-l/(2Qi2)} (J)l [4] 

When Q1 is large, the formulae [3] and [ 4] show that the second 

order low-pass function reaches a maximum gain Q1 at co=叫 At

this time, its transfe~characteristics are those of a low-pass filter 

with a single resonance at co1 and with Q of the resonance nearly 

equal to Q1. Then, the decrease in Q1 brings about the reduction of 

G max• the lower shift of co and the Q d max ecrease simultaneously. 

When Q1 is below 1/✓ 2, the transfer charactenst1cs become those 

of a simple low-pass filter, where co 1 and Q1 are not significant. 

This means that we can control the maximum gain, the resonance 

frequency and the Q, simultaneously by choosing adequate values 

of Q1・

Next, let us consider a Q-decision circuit which calculates 

Q 1(t), the Q of the second order low-pass function at time frame t, 

from controlling signal p(t) in every time frame using the 

following formulae. 

Qmax 

Qi(t) = (Qmax-Qmin){l-p石）｝辺血

Qmin 

where 

p(t)~pmin 

pmin~p(t)~pm訟

pmax~p(t) 

[5] 
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p (t) = (p(t) -pmin)/(pmax -pmin) [6] 

While Qmax, Qmin, pmax and pmin are constants, p(t) is the logarithmic 

power of the controlling signal at time frame t. p(t) is given by 

p(t) = log(Jt ly(t)ldt/て）
t-'t 

[7] 

whereて is a constant which determines the renewal period of 

Q1(t). The input-output function of the Q-decision circuit is shown 

in Fig.2. This Q-decision circuit generates the largest Q1 when p(t) 

is smaller than pmin and the smallest Q1 when p(t) is greater than 

pmax. When p(t) is between pmin and pmax, an intermediate Q1 

value is generated i~versely proportional to p(t). Two choices are 

a~ailable for the control signal of this Q-decision circuit. For 

feedforward control, the LPF input, i.e. the BPF output, is used as 

the control signal. For the feedback control, the LPF output itself 

1s fed back to the Q-decision circuit input. 

A conventional fixed Q cochlear filter is composed of a cascaded 

NOTCH-BPF combination (Lyon, 1982), which has asymmetrical 

filter characteristics: A steep high cutoff and a gradual tail at 

lower frequencies. Adaptive Q circuits in addition to this fixed Q 

cochlear filter realize the three level-dependent filtering 

characteristics: level-dependent frequency selectivity, the level-

dependent nonlinear reduction of the relative gain at the 

resonance frequency and level-dependent resonance frequency 

shift. Although the advantage of the level-dependent resonance 

frequency shift for an auditory spectral analyzer is not yet clear, 

the other two level-dependent characteristics, the Q and gain 

adaptation, cause the system to act as a rational spectral analyzer. 
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That is, the signal-to-noise ratio for weak components is improved 

by increasing not only the gain but also the resonance Q of the 

channel. Thus, weak consonants・and higher formants are 

enhanced and the spectrograms obtained by the AQ filter are 

much more distinct than spectrograms obtained by the 

conventional fixed Q cochlear filters, or DFT spectrograms. In 

addition, the point where the spectral level changes abruptly 1s 

also enhanced by the AQ filter because of the time lag for the Q 

adaptation. These advantages of the adaptive Q type cochlear 

filter seem to be promising for the front-end of a speech 

recognition system. 

3. Phoneme Recognition Experiments 

3.1 Speech Data 

The phoneme tokens used in the experiments are drawn from 

a large ATR database of 5,240 common Japanese words, which 

were uttered in isolation by a male professional announcer (MAU) 

(Kurematsu et al., 1990). All utterances were recorded 1n a 

soundproof room and digitized at a 12kHz sampling rate with 

16bit accuracy. The database was split into a training set and a 

testing set of 2,620 utterances each, from which phoneme tokens 

of 170ms duration were then extracted using manually applied 

acoustic-phonetic labels. 

Each token includes one of the eighteen Japanese consonants 

/b/, ・/d/, /g/, /p/, /t/, /k/, /ml, In/, /NI, /s/, /sh/, /h/, /z/, 

/ch/,./ts/, /r/, /w/ or /y/. The condition of each token extraction 

differs among consonant categories. With regard to the voiced 

stops /b, d, g/, the beginning point of the token extraction was 

7
 



80ms before the succeeding vowel onset. With regard to the 

voiceless stops /p, t, k/, the beginning point of the token 

extraction was 40ms before the stop release. For other consonants, 

the beginning point of the token extraction was 120ms before the 

consonant-vowel boundary. 

Finally, 5,788 tokens were prepared for the training set and 

5,773 tokens were prepared for the test set. The number of 

tokens for each phoneme category is shown in Table 1. 

Table 1 

With regard to noisy data sets, 170ms pink noise (20Hz to 

20kHz) data sampled at 12kHz with 16 bit accuracy was added to 

each clean to,ken. This pink noise was generated by a signal 

generator (B&K 1049). The average signal-to-noise ratio for each 

token, i.e. total energy of a token over the total energy of the 

noise, was approximately 6dB to 3dB. 

3.2 Front-ends 

Figure 3 shows the block diagram of the front-ends used in the 

experiments. The front-end consists of four stages: a filter bank, 

an inner hair cell model (IHC), a temporal and channel integrator 

and a lateral inhibition circuit (LINH). Different combinations of 

filter banks, an inner hair cell model and a lateral inhibition 

circuit were exammed. 

Figure 3 
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3.2.1 Filter banks 

Eight different filter banks of three different types were 

prepared. The first two are simple second-order band pass filter 

banks whose Q (Qb) is 4.5 or 30 (BPF4.5 and BPF30). The next two 

are cascade/parallel type fixed Q cochlear filter banks whose Qb is 

4.5 or 30 (FQF4.5 and FQF30). The last four are adaptive Q 

cochlear filter banks with feedback/feedforward control with a 

short (て=2ms) and a long ('t= lOms) adaptation time constant 

(AQFB2ms, AQFBlOms, AQFF2ms and AQFFlOms). Each filter bank 

was composed of 55 channel filters spaced at 1/3 Bark intervals 

and spanning the frequency range from 1 to 18.67 Bark (lOOHz to 

5,114Hz). Each filters'frequency responses in 1 Bark intervals are 

shown in Fig. 4. 

Figure 4 

It should be noted that the BPF4.5 and BPF30 are subsystems 

of the FQF4.5 and FQF30, respectively. Thus, the effect of the 

asymmetrical frequency response of the・fixed Q cochlear filter, 

which reflects the frequency masking characteristics, is revealed 

by comparing the BPFs and FQFs. On the other hand, all AQFs are 

based on the FQF4.5, and the Q of the adaptive Q circuits was 

determined to vary from 5.0 to 30.0. Then, the actual Q of the 

AQFs varies from 7.0 to 25. Thus, the advantage of adaptive Q 

filtering can be seen by comparing the FQFs and AQFs. 
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3.2.2 Inner Hair Cell Model (IHC) 

The inner hair cell model (IHC) that follows the filter bank 

stage consists of the saturated half-wave rectifier and the short 

term adaptation circuit proposed by Seneff (1988). 

With regard to the saturated half-wave rectifier, it is defined 

mathematically as follows: 

Yi (t) = 1 + A・tan -1 (B•Yi (t)) y i (t) > 0 

= exp(A·B•yi(t)) Yi(t)~0 [8] 

where, Y/t) is the rectifier output of the i-th channel, Yi(t) is the 

filter output of the'i-th channel, A and B are constants of gam 

factors. While Seneff chose A=lO and B=65, we set A=lO and B=3 

because of the level matching requirement between the filter 

bank and the rectifier stage. With regard to the short term 

adaptation circuit, the original parameter values were used. 

The output of this IHC model is regarded as the equivalent of 

the firing rate at the primary auditory nerve. Fig.5 shows the 

block diagram of the IHC model and the input/output signals of 

the model. 

Figure 5 

3.2.3 Temporal Integrator and Channel Integrator 

Given the limitation of the HMM recognition system we used, 

temporal and frequency resolution of either the filter bank output 

or the IHC model output had to be reduced. First, each channel 
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output was averaged along the time axis by using a IOms non-

overlapped rectangular window. Next, the number of channels 

was reduced to 16 by combining four (below 10 Bark) or three 

(above 10 Bark) adjacent channels. Finally, all components were 

transformed into logarithmic values. This process is defined 

mathematically as follows: 

1 
Yi(T) = log10 L N I1Yi(t)I [9] 

t 

where N=120 for 12kHz sampling rate. 

Thus, 170ms tokens were converted into spectrograms 

containing 16 channels of logarithmic energies and 17 time 

frames of 1 Oms each. 

In order to adjust the HMM system input vector size to that of 

DFT front-end, we used only 240 (16 channels by 15 time frames) 

dimensional vectors for each token by discarding the first and the 

last time frame data. 

3.2.4 Lateral Inhibition Circuit (LINH) 

The lateral inhibition process was performed on the 16 channel 

by 15 time frame vectors. The j-th spectrum at time frame T 

transformed by the lateral inhibition process Y'j(T) is obtained by 

a simple convolution of the input j-th component Y/T) and the 

lateral inhibition coefficients入k

n 

Y'j(T) = log10 Iね.Yj+k(T) [1 O] 
k=-n 
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where n=3, 入O=l.0, 入土J=0.6 and 入土2=入、土3=-0.3. This lateral 

inhibition enhances spectral contrast along the frequency axis. 

3.2.5 OFT Front-end 

Conventional DFT based mel scale spectrograms were prepared 

for comparison. The input token was 20ms-Hamming windowed 

and a 256 point FFT computed every 5ms. Then, a 128 channel by 

31 time frame DFT spectrum was obtained from a 170ms token. 

This DFT spectrum was then transformed into 16 mel scale 

coefficients. This transformation was accomplished by adding the 

DFT power spectrum components in each mel scale energy band, 

where adjacent coefficients in frequency overlap by one spectral 

sample and are smoothed by reducing the shared sample by 50 

percent (Waibel et al., 1989). Adjacent coefficients in time were 

collapsed for further data reduction resulting in an overall lOms 

frame rate. Discarding the first frame of the raw DFT spectrum, 

we then obtained 240 dimensional spectrum vectors of 16 

channels by 15 time frames. Finally, all coefficients were 

transformed into logarithmic values. 

Figure 6(a) shows 16 channel by 15 frame feature vectors of 

each front-end for a token /b/ (/aku血； yawing). The formant 

structures of /bi/ are better represented on the vectors of the IHC 

or AQF than those of other front-ends. Figure 6(b) shows feature 

vectors when the LINH was applied. It is clear that the LINH 

enhances spectral contrast. 

Figure 6 
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3.3 HMM Phoneme Recognition System 

Figure 7 shows the HMM phoneme recognition system used m 

the experiment. In the system, K-means clustering was used to 

make a codebook. The input vectors for the clustering procedure 

were a 16 channel by 7 frame partial vector. When this 7-frame 

vector was used, nine partial vectors were obtained from one 

token (16 channels by 15 time frames). In the experiments, 20 

codebook vectors were assigned for each category. 

Figure 7 

A phoneme model with four states and six transitions was used 

m the system. The transition probabilities of the HMMs aij are all 

initialized so as to have equal values. The initial values bik are set, 

for each code k, at the number of observations of code k, divided 

by the number of observations of all codes. The Baum-Welch 

algorithm, based upon maximum likelihood estimation, is used to 

train the HMMs. The number of iterations was set at seven. A 

floor value of lQ-6 was set on the output probabilities to avoid 

errors caused by zero probabilities. 

The recognition task was to classify input tokens into 18 

phoneme categories regardless of the following vowel. 

4. Results 

The results for the experiments are shown in Fig.8(a)-(d). In 

the figures, the abscissa represents front-end type and the 

ordinate is the recognition performance expressed in percent. The 

gray bars represent performance without LINH. The white bars 
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represent improved performance due to LINH。 Theblack lines m 

the gray bars represent degraded performance due to LINH. 

It should be noted that these results were obtained with 

exactly the same back-end conditions. That is, the very same 

tokens were chosen as an initial set for K-means clustering m 

each front-end. When different initial token set were chosen to 

make codebooks for training tokens, the performance was 

changed slightly .. As for the DFT front-end, the averaged 

performance was 91.5% and it's standard deviation was 0.85% for 

ten tests with ten different initial token sets. As for the 

AQFFlOms front-end, averaged performance was 90.1 % and its 

standard deviation was 0.44%. 

Figure 8 

Let us look first at the relative recognition performance when 

the HMM system was trained and tested on clean data (C_C). 

Among the BPFs and the FQFs, the Qb=30 system gave better 

performance than the Qb=4.5 system. When Qb was the same, the 

FQF outperformed the BPF. The AQFs gave better performance 

than the FQF regardless of either the Q control method or the 

adaptation timeて. The IHC model used with AQFFl Oms degraded 

the performance. On the other hand, the lateral inhibition process 

effectively increased performance. The best performance was 

92.4% achieved by the AQFFlOms with LINH. 

Second, when the HMM system was trained on clean data and 

tested with noisy data (C_N), performance deteriorated from 20.9 

to 24.9% compared to when the HMM system was trained and 
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tested on clean data. The ranking of the nine front-ends is 

essentially the same as when clean data was used for the test set. 

The IHC model did not contribute to raising recognition 

performance. In contrast, the LINH effectively increased 

recognition performance in most front-ends, but did not work for 

AQFB, IHC or DFT. The best performance was 70.7% achieved by 

the AQFFIOms with LINH. 

Third, when the HMM system was trained and tested on n01sy 

data (N_N), performance deteriorated from 12.3 to 16.6% 

compared to when the HMM system was trained and tested on 

clean data. Among the BPFs and FQFs,. a larger Qb gave higher 

recognition performance. The AQFFs outperformed the BPFs and 

FQFs. However, the AQFBs were inferior to the FQFs and the 

BPF30. The performance of the IHC model was the worst. The 

effect of the LINH was not particularly large compared to other 

training/testing conditions. The best performance was 76.3% 

achieved by the AQFFIOms with LINH. 

Fourth, when the HMM system was trained on noisy data and 

tested on clean data (N_C), performance deteriorated from 8.6% to 

13 .4% compared to when the HMM . system was trained and tested 

on clean data. When Qb was 4.5, the FQF gave performed better 

than the BPF. However, the result was the opposite when Qb was 

set at 30. Among the AQFs, shorter adaptation time て and

feedforward type Q control improved performance. The IHC 

model degraded the performance. The LINH process improved the 

performance in most front-ends. The best performance was 82.5% 

achieved by the DFT without LINH. 
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5 Discussions 

5.1 Effect of the filter shape 

Filter shape influences recognition performance. It is obvious 

that a larger Qb gives better recognition performance among the 

BPFs or FQFs regardless of the training and testing conditions. The 

FQF generally outperforms the BPF when Qb is the same. Since the 

FQF has sharper cutoff characteristics at higher frequencies than 

the BPF, the -3dB bandwidth of the BPF and FQF is nearly the 

same, but the -20dB bandwidth, for example, of the FQF is 

narrower than that of the BPF. Thus, these two results imply that 

the sharper filter gives better results. 

5.2 Effect of the .adaptive Q filter 

Since the actual Q of the adaptive Q filters varies from 7 .0 to 

25.0 according to the signal level, the advantage of the AQFs 1s 

clarified by comparing the performance of the AQFs with that of 

the FQF4.5 and FQF30. ・If it were only the filter shape which 

contributed to the recognition performance, the AQFs' 

performance should fall between those of the FQF4.5 and the 

FQF30. Nevertheless, the results show that the adaptive Q cochlear 

filters outperform __ not only the FQF4.5 but also the FQF30. Thus, 

the advantage o"f the AQFs is not only based on the filter shape 

but comes from the level-dependent characteristics of the 

adaptive Q filtering. 

With regard to the Q control method, the feedforward control 

always gives better results than the feedback control. In 

particular, the difference between the two control methods 1s 

obvious when dealing with noisy data. With regard to the 

adaptation time constant て， ashorterて givesbetter results except 

when the HMM system was trained on clean data and tested on 
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noisy data. However, when the LINH is applied, a longerて gives

better performance. 

5.3 Effect of the LINH 

The lateral inhibition process effectively improves the 

recognition performance in most cases. When the HMM system is 

trained and tested on clean data, the LINH improves performance 

from 0.6% to 2.9%. When the HMM system is trained and tested 

on noisy data, the performance ranges from -1.8% worse to 1.6% 

better. The LINH degrades the performance of the AQFBs and the 

DFT. When the training and , testing conditions are asymmetrical, 

performance improvement ;eaches 4.2%. In particular, the LINH 

improves the AQFFs'and the FQFs'performance considerably. By 

way of contrast, it does not work for the DFT. 

5.4 Effect of the IHC model 

The use of the IHC model is disappointing. Results show that 

the IHC model used with the AQFF2ms degrades performance not 

only for the clean data but also for the noisy data. We expected 

the use of the IHC model to bring about better performance, 

because the acoustic events of speech are well represented 

visually on the IHC model output. However, the result was the 

opposite. 

One possible reason is that the IHC model we used is not 

properly designed. Another possible reason is that the IHC model 

outputs are adequate for our spectrogram reading knowledge but 

inadequate for the HMM to classify input tokens. It should be 

noted that this temporal contrast enhancement is obtained as a 

result of the level shift threshold mechanism of the short term 

adaptation circuit. That is, the spectrogram enhancement is 

1 7 



accomplished either by emphasizing certain components or 

eliminating certain components. Thus, this elimination might lose 

some information required by the HMM. It is interesting that the 

DFT front-end gives good performance where no component 1s 

emphasized but all power spectrum information is preserved. 

5.5 Comparison with the DFT front-end 

The DFT front-end works surprisingly well for any HMM 

training/testing conditions. Without the LINH, the DFT front-end 

always gives the best performance. Furthermore, even when the 

AQ filter with LINH outperformed the DFT front-end, performance 

difference between the the two front-ends is less than 1.1 %. 

The frequency resolution of the DFT front-end original output 

(128 channels) is about double that of other front-ends (55 

channels). Furthermore, the actual analysis length is 165ms for 

the DFT front-end while it is 150ms for the other front-end. These 

differences might enhance the performance of the DFT front-end. 

Hence, in a strict sense, it is not a fair comparison. However, we 

should say that the benefit of using the auditory front-ends is 

small under the experiment conditions we used. 

5.6 Whether an auditory front-end? 

Since the human auditory system is an excellent speech 

recognizer, it is worthwhile to consider how the human auditory 

system deals with speech. Nevertheless, it should be noted that 

the・actual auditory periphery is designed for the actual higher 

level processes of the auditory system. Thus, the output of a 

properly designed auditory model will be suitable for a human 

pattern classifier or its equivalent model. However, it is obvious 
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that the modern stochastic pattern classifiers such as HMM are 

not the model of how human beings classify speech patterns. 

Therefore, in order to judge whether a properly designed 

auditory. model could generate a useful representation of speech 

for a speech recognition system or not, it is necessary to repeat 

the recognition experiment using an auditory front-end and a 

feature-based pattern classifier. 

Figure 9 

In addition, it is worthwhile to test a composite phoneme 

recognition system・as shown in Fig. 9. The composite system 

consists of a time varying front-end, a time varying feature 

transformer and a pattern classifier. The front-end and feature 

transformer・characteristics are controlled by the recognition 

result so as to generate a more efficient feature vector for the 

pattern classifier. The feature transformer plays the role of an 

"impedance matching section" between a front-end and the back-

end used in the system. An auditory model such as the adaptive Q 

cochlear filter is suitable for the front-end and an artificial neural 

network such as a spatio-temporal lateral inhibition circuit 1s 

suitable for the feature transformer, because their characteristics 

are easily controlled. These will be the subject of future studies. 

6・Summary and Conclusion 

In this paper, we have examined several auditory 

spectrograms in speaker dependent HMM phoneme recognition 

tests. Results are summarized as follows: 
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(1) Among the simple second-order band-pass filter banks or the 

fixed Q cochlear filter banks, the Qb=30 system gives higher 

performance than the Qb=4.5 system. 

(2) When Qb is the same, the fixed Q cochlear filter banks give 

higher performance than the second order band-pass filter 

banks. 

(3) The adaptive Q cochlear filter bank with feedforward control 

outperforms traditional filter banks whose filtering 

characteristics are fixed. 

(4) _A lateral inhibition process applied on the logarithmic power 

spectrum improves recognition performance. In particular, the 

combination of the feedforward type adaptive Q filter and the 

lateral inhibition process provides the highest performance in 

・most training/testing conditions. 

(5) In contrast, the inner hair cell model used in the experiment 

degrades performance. 

(6) Without the lateral inhibition, the DFT front-end always gives 

the best performance. Even when the adaptive Q cochlear filter 

with lateral inhibition outperformed the DFT front-end, 

performance difference between the two is less than 1.1 %. 

From these results, we conclude that the adaptive Q cochlear 

filter followed by the lateral inhibition process works well for an 

HMM phoneme recognition system. However, we should say that 

the benefit of using this auditory front-end is small under the 

experiment conditions we used. More systematic application 

research, such as recognition experiments testing distance 

measure and recognition methods, are needed to judge whether 

an auditory front-end pays off or not. In particular, it is necessary 

20 



to test the combination of an auditory front-end and a feature-

based phoneme classifier. 
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Figure captions 

Table 1 Number of tokens used in・the experiment. 

Figure 1 Block diagram of a cascade/parallel type adaptive Q 

cochlear filter bank. The adaptive Q cochlear filter consists 

of three parts: (1) cascaded second order notch filters 

(NOTCH), (2) second-order band pass filters (BPF) connected 

to each NOTCH output and (3) adaptive Q circuits (AQ) 

connected to each BPF output. This adaptive Q cochlear filter 

functionally simulates three level-dependent filtering 

characteristics of the basilar membrane vibrating system in 

the cochlea. 

Figure 2 Block diagram of the adaptive Q circuit. Frequency 

responses of a second-order low-pass-filter (LPF) at four Q 

values (left) and input-output relationship of a Q-decision 

circuit, which calculates the second-order LPF's Q from 

control signal by formulae (5) (6) and (7) (right). 

Figure 3 Block diagram of the front-ends used in the 

experiments. 

Figure 4 Filter responses of three types of filter-banks. In each 

panel, filter responses are drawn in 1 Bark intervals, i.e. in 

3 channel intervals. BPF4.5 and BPF30 show the responses 

of the second-order band-pass-filter whose Q (Qb) is 4.5 and 

30. FQF4.5 and FQF30 show the responses of the 

cascade/parallel type fixed Q cochlear filter bank whose Qb 

is 4.5 and 30. AQF minimum Q and AQF maximum Q show 

the adaptive Q cochlear filter responses when Q of the 

adaptive Q circuit of all channel is set at minimum value 
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(Q1=3.0) and maximum value (Q1=45). Qb of AQFs is set at 

4.5. 

Figure 5 Block diagram of the inner hair cell model (IHC) which 

consists of a half-wave rectifier (HWR) and a short term 

adaptation circuit (STA) proposed by Seneff (1988). Input 

for the HWR, i.e. filter output, HWR output and STA output 

of 6th, 33rd and 55th channel for one second of speech data 

are also depicted. 

Figure 6 (a) 240 dimensional feature vectors (16 channels by 

15 frames) for a token /b/ (/aku血； yawing) obtained by 

each front-end. (b) The same feature vectors obtained by 

each front-end'with lateral inhibition circuit (LINH). 

Figure 7 (a) Block diagram of the HMM phoneme recognition 

system and (b) a phoneme model structure. K-means 

clustering was used to make a codebook, where input 

vectors for the clustering procedure were a 16 channel by 7 

frame partial vector. 

Figure 8 The results for the phoneme recognition experiments: 

The abscissa represents the front-end type and the ordinate 

represents the recognition performance expressed rn 

percent. The gray bars represent performance without 

LINH. The white bars represent improved performance due 

to LINH. The heavy black lines in the gray bars represent 

degraded performance due to LINH. BPFs are the simple 

second-order band-pass filter, FQFs are the fixed Q cochlear 

filter, AQFFs are the adaptive Q cochlear filter with feed-

forward Q control, AQFBs are adaptive Q cochlear filter with 
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feedback Q control, IHC is the AQFF2ms used with IHC 

model and DFf is the D町 basedmel scale filter. 

Figure 9 Concept of a composite・phoneme recognition system 

which consists of a time varying front-end, a time varying 

feature transformer and a pattern classifier. The front-end 

and feature transformer characteristics are controlled by 

the recognition result so as to generate a more efficient 

feature vector for the pattern classifier. An auditory model 

such as the adaptive Q cochlear filter is suitable for the 

front-end and a spatio-temporal lateral inhibition circuit is 

suitable for the feature transformer. The feature 

transformer plays the role of an "impedance matching 

section" between the front-end and the back-end used in 

, the system. 
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Feedback 

Feedback 

To a linguistic processing stage 

Classification results 

Pattern Classifier 

• Stochastic pattern classifier 
• Feature based pattern classifier 

Time varying 
Feature Transformer 

• Artificial neural network 
• Lateral Inhibition circuit 

Time varying 
Feature Extracter 

• Auditory peripheral model 
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