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Recurrent L VQ for Phoneme Recognition 

1. Introduction 

Erik McDermott and Shigeru Ka tagiri 
ATR Auditory & Visual Perception 

Research Laboratories 
Sanpeidani, Inuidani, 
Soraku-gun, Seika-cho, 
Kyoto 619-02, Japan 

A key issue in speech recognition is the representation of the temporal 
structure of the speech signal. In Hidden Markov Models the sequential 
nature of the speech signal is explicitly represented by matching 
incoming speech against a connected sequence of states, each of which 
models speech at a given temporal position. However, explicit modelling 
of this sort requires that one design the state sequences manually, and 
decide upon the appropriate number and connectivity of the states. It 
might be advantageous to learn how to represent temporal structure 
implicitly. Recurrent "neural" networks are a promising method for 
achieving this [6,7,8]. 

In previous work [11] we reported high recognition rates for simple 
LVQ (Learning Vector Quantization) networks trained to recognize 
phoneme tokens that are shifted in time. To represent the acoustic 
context, these networks used a fixed-width window which was shifted 
over the input. In this method, the fixed-width window was assumed to 
be sufficient to represent the necessary context. However, the fact that the 
length of the window is fixed means that phonemes that are either 
longer or shorter than the window will not be optimally represented. 

Here we examine whether recurrent LVQ networks can represent 
context more efficiently. 

2. Recurrent LVQ 

LVQ is a prototype-based pattern recognition algorithm. Each category 
of the task is associated with a number of reference vectors; classification 
is done by nearest neighbour search among all reference vectors. During 
the training phase, reference vectors are adapted so as to minimize the 
number of mis-classification. See [ 4, 12] for a detailed description of the 
algorithm, and [3] for a theoretical analysis describing LVQ as a method 
for gradient descent on a loss function reflecting the mis-classification 
rate. 

Figure 1 shows a recurrent LVQ architecture. The speech part of the 
input shown here is represented as a matrix of a variable number of time 
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frames of 16 melscale spectrum channels each. These coefficients are 
displayed in Figure 1 as black or white squares of varying sizes, size 
representing magnitude, black for positive values, white for negative 
values. 

The idea of recurrent LVQ is to represent the internal state of the 
network as it scans speech input, and to feed the state representation back 
to the network, in the form of an additional input vector. For recurrent 
networks trained using Back-propagation [6,7,8], the internal state 
representation is simply the vector of hidden unit activations. In 
recurrent L VQ, instead of hidden unit activations, a function of the 
vector of distances between the previous input vector and each reference 
vector was used to generate the internal state representation. As in Shift-
Tolerant LVQ, a window is shifted over the speech input, one frame at a 
time. This time, however, the window is not the only representation of 
context: it is supplemented by the recurrently_ generated state vectors. The 
reference vectors thus use two sources of information to discriminate 
phonemes: the speech input at each window position, and the 
recurrently generated internal state vector for the previous window 

position 1. This means each reference vector has two parts: a speech part 
and a context part. The dimensionality of the reference ve_ctors is the 
number of spectral coefficients inside the window (16 channels times the 
window width, in frames) plus the number of reference vectors itself. 

The training procedure we adopted was as follows: 

1) Initial Conditions: The speech part of the reference vectors was 
initialized as in Shift-Tolerant L VQ, by using the K-means distortion 
minimizing procedure. Due to the recurrent nature of the cont~xt units, 
it was deemed inappropriate to perform K-means clustering on the 
context part of the reference vectors. The context part was thus initialized 
at small random values. 

2) LVQ1 training. The LVQ1 algorithm [1, 4] was first applied to the 
recurrent architecture (i.e. to both the context and speech parts of the 
reference vectors), as a prelude to LVQ3 training. LVQ1 has the effect of 
spreading the reference vectors over the pattern space, with a density 
proportional to the joint probability density of the input. This constitutes 
a good initial configuration for LVQ3 training, which concerns itself 
specifically with reducing the number of mis-classification. Furthermore, 
LVQ1 can be applied to the recurrent context units more easily than K-
means. 

3) LVQ3 training. Finally, LVQ3 training [12] was applied to the recurrent 
architecture. The idea is that the context units will provide useful 
information about the time course of phoneme utterances, information 
that will help discriminate phonemes. The distance calculation in 
recurrent L VQ uses both the recurrent and speech parts of the reference 
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1 For the very first position of the time window, there is no previous 
internal state; the context units are thus set at 0.0. 
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vectors. The resulting distances are then fed back to the next input 
through the context units. 

Training here is performed segmentally; i.e. the task is to discriminate 
a phoneme given only the information from the context and speech 
units for a given position of the sliding temporal window. No "back-
propagation in time" is performed [8,10] here; rather the method is very 
similar to that used in [6,7]. This local training method is viewed as an 
approximation of back-propagation in time. 

4) Recognition: A phoneme token is recognized using the same method 
as in Shift-Tolerant LVQ: the distances between input vectors and closest 
reference vectors for each category are summed over time; the category 
with the lowest sum is chosen as the recognized category. 

Given an N dimensional distance vector (one value for each reference 
vector), the function used to generate the internal state vector (of equal 
dimensionality) was of the following form: 

f(dn) 
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This function is applied to each component of the distance vector. Here 
dn is the distance between the input vector and the nth reference vector, 
N is the total number of reference vectors, and S is the dimensionality of 
the speech segments obtained at each position of the shifting_window. 
This function has two significant properties: 1) small distances (for 
reference vectors that are close to the input vector) are mapped to large 
values; 2) the value range of the resulting N dimensional internal state 
vector (or context vector) is between O and 2N /S. Given the -1 to 1 value 
range of the S dimensional speech vector [4], the contribution that the 
context part makes to the distance calculation is thus roughly equal to 
that of the speech part. 
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Figure 1. Recurrent L VQ for phoneme recognition 

3. Databases and Experiments. 

Four databases were examined here: 

Speaker-dependent: 
A) a database of 5240 Japanese words, spoken in isolation; 
B) a database of 880 Japanese sentences, spoken semi-continuously, 

phrase by phrase; 
C) a database of 880 Japanese sentences, spoken continuously; 

Half of the first database was used for training; the other half and the 
other databases were used for testing. All three databases are for a single 
male speaker. ') 

了
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Spea ker-i ndependen t: 
D) a database of 5240 Japanese words, spoken in isolation by 16 

speakers. Data for 15 speakers were used to train the system; data for the 
remaining speaker were used to test the system. The datasets used for 
training and testing were of approximately the same size . 

The task we examined, using these different datasets, was the 
recognition of all Japanese consonants. This task was previously used to 
evaluate the standard, non-recurrent Shift-Tolerant L VQ algori thrn [ 4] 
[13]. 

We addressed two questions: 1) can recurrent LVQ achieve better 
performance than non-recurrent LVQ? 2) can recurrent LVQ using a 
small time window achieve the same level of performance as non-
recurrent LVQ using a larger time window? Positive answers to these 
questions would suggest that recurrent LVQ has learned to use the 
context units to represent the time course of a phoneme token. 

To answer these questions, we compared the recurrent L VQ 
architecture with the standard Shift Tolerant LVQ architecture, applied to 
the 4 databases described above, for two different window sizes: 3 frames 
and 7 frames. The number of reference vectors was kept fixed, at 15 
vectors per category. For the recurrent architecture, L VQ1 was performed 
for 10 epochs (1 epoch = one full presentation of the training tokens in 
the task), after which LVQ3 was performed for 15 epochs. For the non-
recurrent, standard Shift-Tolerant L VQ architecture, LVQ3 training was 
performed for 15 epochs. Note that our purpose here is co1:1parison 
between recurrent and non-recurrent LVQ, and not an attempt to 
produce the highest absolute recognition levels possible f9r these 
algorithms. 

Ta.ble 1 shows the results obtained after a single learning run (i.e. one 
performance of the three steps described above) for each combination of 
architecture and recognition task. 
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Recognition Method 

3 frame 
Window Size 

7 frame 
window window 

Architecture Architecture 
Databases recurrent non-rec. recurrent non-rec. 

甘 A: Isolated Words 98.3% 98.0% 99.4% 99.7% 
Q,) 

(train/test) I 95.9% I 95.5% I 97.4% I 97.2% "Cl 

~ 
p. 

B: Phrase-by-phrase c., 

77.9% 79.7% 85.1% 84.2% "'d 
~ Utterances (test) 

苔Pa " C: Continuous Speech 70.7% 71.3% 74.3% 73.0% 
Cf.J (test) 

D: Speaker Independent 
82.6% 82.9% 92.9%/ 92.7% 

Isolated Words I 76.6% I 76.9% 86.0% I 86.0% 
(train/test) 

)
‘
t
 

r
 

Table 1: Phoneme recognition results for recurrent and non-recurrent 
recognition architectures of different window sizes, tested on phonemes 
taken from 4 different databases. 

4.D誌cussion

The results we obtained suggest that the recurrent architecture did not 
succeed in learning to represent phonemic context any more efficiently 
than the non-recurrent architecture does. 

For all the tasks examined, the difference in performance between 
recurrent and non-recurrent architectures is small. The striking aspect of 
the results in Table 1 is rather the difference between architectures using 
a 3 frame window and those using a 7 frame window. This confirms 
what we already know [4], that 7 frames affords a better representation of 
context than 3 frames does, while providing little support for our hope 
that recurrent architectures would be able to learn the context as 
appropriate, i.e. as short or as long as is needed to discriminate between 
the different phonemes. The fact that the 3 frame recurrent architectures 
performed less well than the 7 frame non-recurrent architectures suggests 
that the context units were unable to represent a phonemic time course, 
or context, of even 4 frames (the difference in context between a 3 frame 
and a 7 frame time-window). Thus, to answer the questions asked above, 
we find that 1) recurrent LVQ, in this version, does not do as well with a 
small time-window as non-recurrent LVQ using a large time-window, 
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Squares of different sizes and colors represent different spectral coefficients. The 
size of each square represents magnitude; black indicates positive, white negative. 

The sample shown at the top of the figure is a /k/ token, drawn from a 
multi-speaker database of 20 Japanese consonants. 

The line of segments marked "seg=frarne#" shows the speech segments obtained 
by shifting a 7 frame window over the token. 

The bottom line of segments, marked "cv=frame#", shows the actual context 
activations corresponding to each frame number. Strong activations (large black 
squares) indicate that the reference vector corresponding to that coordinate was 
close to the previous input. The coordinates of the closest reference vector for the 
previous input are indicated outside the segment boxes. 

The two lines of segments marked "rv category#, reference vector#" show the 
closest reference vector obtained for each speech segment. The top line shows the 
speech part of the reference vectors; the bottom line shows the context part. 

Figme 2. Recmrent reference vector representations over time. 



and 2) using time-windows of the same size, recurrent LVQ performs no 
better than non-recurrent LVQ. 

What are the weaknesses of the version of recurrent LVQ proposed 
here? An examination of the context unit representation will help 
answer this question. Figure 2 shows what happens when a /k/ token is 
presented as input to the recurrent LVQ architecture. The speech input is 
shown, along with the first 6 speech segments obtained by scanning the 
time-window over the speech input, as well as the recurrently generated 
context units. Also shown are the speech and context parts of the closest 
reference vectors found over time. One can see that the speech part of the 
reference vectors closely resembles the speech input. One can also see that 
the context part of the reference vectors closely resembles the context unit 
activations. This is significant, as it shows that internal state is being 
represented in prototype form. Recurrent LVQ training generated context 
reference vectors that model, in prototype form, the activations of all the 
reference vectors at the previous time step. 

However, if we look more closely at the context unit activations 
themselves, it appears that they reflect little more than the immediately 
prior state of the architecture. Context units whose activation is high 
(large black squares) reflect the fact that the corresponding reference 
vector was one of the closest vectors at the previous scan po・sition of the 
time-window, but it does not appear that they reflect anything beyond 
that, i.e. further back in time. Thus, although the context reference 
vectors were able to learn something about the internal state of the 
recurrent architecture, it appears that the internal state reflects no more 
than the reference vector activations for the immediately preceding time 
step. The architecture as a whole was unable to generate context 
activations representing the whole time course of phoneme tokens. 

This result seems to flow directly from the fact that the tr_aining is 
overly local, i.e. only extends one step back in time. Note that the context 
units. themselves are recurrentl> generated; their values depend on the 
whole time course. However, 1t seems that the learning method we 
employed was unable to exploit this in the manner described Elman and 
McClelland in [6,7]. Note, however, that the tasks examined in [6,7] were 
quite different from the tasks we examined here. Elman examined the 
prediction of successive letters in sentences generated from a small 
grammar. McClelland et al. considered the learning of sequences of 
symbols generated by a finite state machine. These tasks are significantly 
"cleaner" than the task of processing actual speech data. 

Our conclusion is that in order to achieve improvements over non-
recurrent LVQ, we need to perform training over the whole time course 
of each training token, and not just at the level of each time-window 
position. This is the method used in [8,10]. It is more difficult to 
implement than the local, segmental recurrent training described here, 
but our resulぉsuggestthat this might be necessary. 
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Conclusion 

We here examined a form of recurrent training for LVQ architectures. 
The version proposed here is a simple attempt at creating an architecture 
that can learn to represent the appropriate degree of context needed to 
discriminate phonemes. This is more appealing than non-recurrent 
architectures which require that one fix the context. However, we found 
that the training method used here was overly local and failed to 
represent context recurrently. A more global training method, though 
more complex, is more promising in this respect. Visual examination of 
recurrently generated LVQ context units suggests that phonemic context 
might be representable in prototype-based learning algorithms. 
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