
TR-A-0115

Recurrent LVQ for Phoneme
Recognition

Erik McDermott and Shigeru Katagiri

1991.6.12

ATR視聴覚機構研究所
〒619-02京都府相楽郡精華町乾谷 ~07749-5-1411

ATR Auditory and Visual Perception Research Laboratories

lnuidani,Sanpeidani, Seika-cho, Soraku -gun, Kyoto 619-02 Japan

Telephone: +81-7749-5-1411
Facsimile: +81-77 49-5-1408
Telex: 5452-516 ATR J

c 闊ATR視聴覚機構研究所

Recurrent L VQ for Phoneme Recognition

1. Introduction

Erik McDermott and Shigeru Ka tagiri
ATR Auditory & Visual Perception

Research Laboratories
Sanpeidani, Inuidani,
Soraku-gun, Seika-cho,
Kyoto 619-02, Japan

A key issue in speech recognition is the representation of the temporal
structure of the speech signal. In Hidden Markov Models the sequential
nature of the speech signal is explicitly represented by matching
incoming speech against a connected sequence of states, each of which
models speech at a given temporal position. However, explicit modelling
of this sort requires that one design the state sequences manually, and
decide upon the appropriate number and connectivity of the states. It
might be advantageous to learn how to represent temporal structure
implicitly. Recurrent "neural" networks are a promising method for
achieving this [6,7,8].

In previous work [11] we reported high recognition rates for simple
LVQ (Learning Vector Quantization) networks trained to recognize
phoneme tokens that are shifted in time. To represent the acoustic
context, these networks used a fixed-width window which was shifted
over the input. In this method, the fixed-width window was assumed to
be sufficient to represent the necessary context. However, the fact that the
length of the window is fixed means that phonemes that are either
longer or shorter than the window will not be optimally represented.

Here we examine whether recurrent LVQ networks can represent
context more efficiently.

2. Recurrent LVQ

LVQ is a prototype-based pattern recognition algorithm. Each category
of the task is associated with a number of reference vectors; classification
is done by nearest neighbour search among all reference vectors. During
the training phase, reference vectors are adapted so as to minimize the
number of mis-classification. See [4, 12] for a detailed description of the
algorithm, and [3] for a theoretical analysis describing LVQ as a method
for gradient descent on a loss function reflecting the mis-classification
rate.

Figure 1 shows a recurrent LVQ architecture. The speech part of the
input shown here is represented as a matrix of a variable number of time

-1 -

frames of 16 melscale spectrum channels each. These coefficients are
displayed in Figure 1 as black or white squares of varying sizes, size
representing magnitude, black for positive values, white for negative
values.

The idea of recurrent LVQ is to represent the internal state of the
network as it scans speech input, and to feed the state representation back
to the network, in the form of an additional input vector. For recurrent
networks trained using Back-propagation [6,7,8], the internal state
representation is simply the vector of hidden unit activations. In
recurrent L VQ, instead of hidden unit activations, a function of the
vector of distances between the previous input vector and each reference
vector was used to generate the internal state representation. As in Shift-
Tolerant LVQ, a window is shifted over the speech input, one frame at a
time. This time, however, the window is not the only representation of
context: it is supplemented by the recurrently_ generated state vectors. The
reference vectors thus use two sources of information to discriminate
phonemes: the speech input at each window position, and the
recurrently generated internal state vector for the previous window

position 1. This means each reference vector has two parts: a speech part
and a context part. The dimensionality of the reference ve_ctors is the
number of spectral coefficients inside the window (16 channels times the
window width, in frames) plus the number of reference vectors itself.

The training procedure we adopted was as follows:

1) Initial Conditions: The speech part of the reference vectors was
initialized as in Shift-Tolerant L VQ, by using the K-means distortion
minimizing procedure. Due to the recurrent nature of the cont~xt units,
it was deemed inappropriate to perform K-means clustering on the
context part of the reference vectors. The context part was thus initialized
at small random values.

2) LVQ1 training. The LVQ1 algorithm [1, 4] was first applied to the
recurrent architecture (i.e. to both the context and speech parts of the
reference vectors), as a prelude to LVQ3 training. LVQ1 has the effect of
spreading the reference vectors over the pattern space, with a density
proportional to the joint probability density of the input. This constitutes
a good initial configuration for LVQ3 training, which concerns itself
specifically with reducing the number of mis-classification. Furthermore,
LVQ1 can be applied to the recurrent context units more easily than K-
means.

3) LVQ3 training. Finally, LVQ3 training [12] was applied to the recurrent
architecture. The idea is that the context units will provide useful
information about the time course of phoneme utterances, information
that will help discriminate phonemes. The distance calculation in
recurrent L VQ uses both the recurrent and speech parts of the reference

.
A
&

L

●

f'ー

1 For the very first position of the time window, there is no previous
internal state; the context units are thus set at 0.0.

-2-

vectors. The resulting distances are then fed back to the next input
through the context units.

Training here is performed segmentally; i.e. the task is to discriminate
a phoneme given only the information from the context and speech
units for a given position of the sliding temporal window. No "back-
propagation in time" is performed [8,10] here; rather the method is very
similar to that used in [6,7]. This local training method is viewed as an
approximation of back-propagation in time.

4) Recognition: A phoneme token is recognized using the same method
as in Shift-Tolerant LVQ: the distances between input vectors and closest
reference vectors for each category are summed over time; the category
with the lowest sum is chosen as the recognized category.

Given an N dimensional distance vector (one value for each reference
vector), the function used to generate the internal state vector (of equal
dimensionality) was of the following form:

f(dn)
．

‘‘,/ i

n
%

d

(

x
N

a

VI

y

m
図

．

2

＝

愧

This function is applied to each component of the distance vector. Here
dn is the distance between the input vector and the nth reference vector,
N is the total number of reference vectors, and S is the dimensionality of
the speech segments obtained at each position of the shifting_window.
This function has two significant properties: 1) small distances (for
reference vectors that are close to the input vector) are mapped to large
values; 2) the value range of the resulting N dimensional internal state
vector (or context vector) is between O and 2N /S. Given the -1 to 1 value
range of the S dimensional speech vector [4], the contribution that the
context part makes to the distance calculation is thus roughly equal to
that of the speech part.

-3-

b d g p t k m n N s sh h z ch ts r w y

I羅匿 ■I I■ I I ● I 置 11 1 1 1 1置1

て A

Final activations A

Activations
over time

L
“

鼻
~
•
S
」

p
a
A
'
J
a
}
I
#ーー曹’

ー
: :.:.~:.::.1111翡土出---·--·······••·· , . -・.. ー・•·············••·•• , - -••
.: ~、；~.;.;. ;.~:i::111~.:.
• ■ ■ ■ ■ ■ •• ■ ■ a a a■ I■■■ ·············•··••
~# Phonemes

Context Units

~

X frames, 10 rnsec/frarne

Speech Units

Figure 1. Recurrent L VQ for phoneme recognition

3. Databases and Experiments.

Four databases were examined here:

Speaker-dependent:
A) a database of 5240 Japanese words, spoken in isolation;
B) a database of 880 Japanese sentences, spoken semi-continuously,

phrase by phrase;
C) a database of 880 Japanese sentences, spoken continuously;

Half of the first database was used for training; the other half and the
other databases were used for testing. All three databases are for a single
male speaker. ')

了

-4-

Spea ker-i ndependen t:
D) a database of 5240 Japanese words, spoken in isolation by 16

speakers. Data for 15 speakers were used to train the system; data for the
remaining speaker were used to test the system. The datasets used for
training and testing were of approximately the same size .

The task we examined, using these different datasets, was the
recognition of all Japanese consonants. This task was previously used to
evaluate the standard, non-recurrent Shift-Tolerant L VQ algori thrn [4]
[13].

We addressed two questions: 1) can recurrent LVQ achieve better
performance than non-recurrent LVQ? 2) can recurrent LVQ using a
small time window achieve the same level of performance as non-
recurrent LVQ using a larger time window? Positive answers to these
questions would suggest that recurrent LVQ has learned to use the
context units to represent the time course of a phoneme token.

To answer these questions, we compared the recurrent L VQ
architecture with the standard Shift Tolerant LVQ architecture, applied to
the 4 databases described above, for two different window sizes: 3 frames
and 7 frames. The number of reference vectors was kept fixed, at 15
vectors per category. For the recurrent architecture, L VQ1 was performed
for 10 epochs (1 epoch = one full presentation of the training tokens in
the task), after which LVQ3 was performed for 15 epochs. For the non-
recurrent, standard Shift-Tolerant L VQ architecture, LVQ3 training was
performed for 15 epochs. Note that our purpose here is co1:1parison
between recurrent and non-recurrent LVQ, and not an attempt to
produce the highest absolute recognition levels possible f9r these
algorithms.

Ta.ble 1 shows the results obtained after a single learning run (i.e. one
performance of the three steps described above) for each combination of
architecture and recognition task.

-5-

Recognition Method

3 frame
Window Size

7 frame
window window

Architecture Architecture
Databases recurrent non-rec. recurrent non-rec.

甘 A: Isolated Words 98.3% 98.0% 99.4% 99.7%
Q,)

(train/test) I 95.9% I 95.5% I 97.4% I 97.2% "Cl

~
p.

B: Phrase-by-phrase c.,

77.9% 79.7% 85.1% 84.2% "'d
~ Utterances (test)

苔Pa " C: Continuous Speech 70.7% 71.3% 74.3% 73.0%
Cf.J (test)

D: Speaker Independent
82.6% 82.9% 92.9%/ 92.7%

Isolated Words I 76.6% I 76.9% 86.0% I 86.0%
(train/test)

)
‘
t

r

Table 1: Phoneme recognition results for recurrent and non-recurrent
recognition architectures of different window sizes, tested on phonemes
taken from 4 different databases.

4.D誌cussion

The results we obtained suggest that the recurrent architecture did not
succeed in learning to represent phonemic context any more efficiently
than the non-recurrent architecture does.

For all the tasks examined, the difference in performance between
recurrent and non-recurrent architectures is small. The striking aspect of
the results in Table 1 is rather the difference between architectures using
a 3 frame window and those using a 7 frame window. This confirms
what we already know [4], that 7 frames affords a better representation of
context than 3 frames does, while providing little support for our hope
that recurrent architectures would be able to learn the context as
appropriate, i.e. as short or as long as is needed to discriminate between
the different phonemes. The fact that the 3 frame recurrent architectures
performed less well than the 7 frame non-recurrent architectures suggests
that the context units were unable to represent a phonemic time course,
or context, of even 4 frames (the difference in context between a 3 frame
and a 7 frame time-window). Thus, to answer the questions asked above,
we find that 1) recurrent LVQ, in this version, does not do as well with a
small time-window as non-recurrent LVQ using a large time-window,

-6 -

Time, Srns fr~rnc r~tc~

ニ〗

IHI~~~
・7,r.7□ □9ここ
。
゜
•
S羽
呂
J
\
·
p
l
l
.
J
O
#

ー
↓
＞
＇

．

5

．．
 ．．

5
●''... ．．．． ．．．．．．． ... ,...

', ,
・・・・·•,''' ．．．．．．

21 : : :;, : ・. . :
• .. ・ ・・・・...

21□□□
of Categories -ぅ←

Squares of different sizes and colors represent different spectral coefficients. The
size of each square represents magnitude; black indicates positive, white negative.

The sample shown at the top of the figure is a /k/ token, drawn from a
multi-speaker database of 20 Japanese consonants.

The line of segments marked "seg=frarne#" shows the speech segments obtained
by shifting a 7 frame window over the token.

The bottom line of segments, marked "cv=frame#", shows the actual context
activations corresponding to each frame number. Strong activations (large black
squares) indicate that the reference vector corresponding to that coordinate was
close to the previous input. The coordinates of the closest reference vector for the
previous input are indicated outside the segment boxes.

The two lines of segments marked "rv category#, reference vector#" show the
closest reference vector obtained for each speech segment. The top line shows the
speech part of the reference vectors; the bottom line shows the context part.

Figme 2. Recmrent reference vector representations over time.

and 2) using time-windows of the same size, recurrent LVQ performs no
better than non-recurrent LVQ.

What are the weaknesses of the version of recurrent LVQ proposed
here? An examination of the context unit representation will help
answer this question. Figure 2 shows what happens when a /k/ token is
presented as input to the recurrent LVQ architecture. The speech input is
shown, along with the first 6 speech segments obtained by scanning the
time-window over the speech input, as well as the recurrently generated
context units. Also shown are the speech and context parts of the closest
reference vectors found over time. One can see that the speech part of the
reference vectors closely resembles the speech input. One can also see that
the context part of the reference vectors closely resembles the context unit
activations. This is significant, as it shows that internal state is being
represented in prototype form. Recurrent LVQ training generated context
reference vectors that model, in prototype form, the activations of all the
reference vectors at the previous time step.

However, if we look more closely at the context unit activations
themselves, it appears that they reflect little more than the immediately
prior state of the architecture. Context units whose activation is high
(large black squares) reflect the fact that the corresponding reference
vector was one of the closest vectors at the previous scan po・sition of the
time-window, but it does not appear that they reflect anything beyond
that, i.e. further back in time. Thus, although the context reference
vectors were able to learn something about the internal state of the
recurrent architecture, it appears that the internal state reflects no more
than the reference vector activations for the immediately preceding time
step. The architecture as a whole was unable to generate context
activations representing the whole time course of phoneme tokens.

This result seems to flow directly from the fact that the tr_aining is
overly local, i.e. only extends one step back in time. Note that the context
units. themselves are recurrentl> generated; their values depend on the
whole time course. However, 1t seems that the learning method we
employed was unable to exploit this in the manner described Elman and
McClelland in [6,7]. Note, however, that the tasks examined in [6,7] were
quite different from the tasks we examined here. Elman examined the
prediction of successive letters in sentences generated from a small
grammar. McClelland et al. considered the learning of sequences of
symbols generated by a finite state machine. These tasks are significantly
"cleaner" than the task of processing actual speech data.

Our conclusion is that in order to achieve improvements over non-
recurrent LVQ, we need to perform training over the whole time course
of each training token, and not just at the level of each time-window
position. This is the method used in [8,10]. It is more difficult to
implement than the local, segmental recurrent training described here,
but our resulぉsuggestthat this might be necessary.

-7-

Conclusion

We here examined a form of recurrent training for LVQ architectures.
The version proposed here is a simple attempt at creating an architecture
that can learn to represent the appropriate degree of context needed to
discriminate phonemes. This is more appealing than non-recurrent
architectures which require that one fix the context. However, we found
that the training method used here was overly local and failed to
represent context recurrently. A more global training method, though
more complex, is more promising in this respect. Visual examination of
recurrently generated LVQ context units suggests that phonemic context
might be representable in prototype-based learning algorithms.

References

[1] T. Kohonen; "Self-organization and Associative Memory" (2nd Ed.),
pp. 199-202, Springer, Berlin-Heidelberg-New York-Tokyo, 1988.

[2] T. Kohonen, G. Barna and R. Chrisley; "Statistical Pattern Recognition
with Neural Networks: Benchmarking Studies," IEEE, Proc. of ICNN,
Vol. I, pp. 61-68, July 1988.

[3] S. Katagiri, C.H. Lee, and B.H. Juang, "A Generalized Probabilistic・
Descent Method," Proc. of Acoustical Society of Japan, September
1990.

[4) E. McDermott and S. Ka tagiri, "Shift-Tolerant L VQ for fhoneme
Recognition," Proc of IEEE Acoustics and Signal Processing, June 1991
[Forthcoming].

[5) A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. Lang,
"Phoneme Recognition: Neural Networks vs. Hidden Markov Models,"
Proc. of ICASSP, S3.3:107-110, April 1988.

[6) J.L. Elman, "Finding Structure in Time," Cognitive Science, 14, 179-
211, 1990.

[7) A. Cleeremans, D. Servan-Schreiber and J. McClelland, "Finite State
Automata and Simple Recurrent Networks." Neural Computation 1, 372-
381, 1989.

[8] T. Robinson and F. Fallside, "Phoneme
database using recurrent error-propagation
CUED /F-INFENG /TR.42, Cambridge
Department, March 1990.

Recognition from the TIMIT
networks." Technical Report
University Engineering

[9] J. Makhoul, S. Roucos, and H. Gish, "Vector Quantization in Speech
Coding". Proc IEEE 73, No. 11, 1551-88.

← 8 -

[1 OJ D.E. Rumelhart, G .E. Hinton, and R.J. Williams, "Leaming
Internal Representations by Error Propagation," in Parallel Distributed
Processing, edited by D.E. Rumelhart and J.L. McClelland (MIT Press,
Cambridge, USA, 1986)

[11) E. McDermott, S. Katagiri, "Shift-Tolerant Phoneme Recognition
Using Kohonen's LVQ2." Proc. of IEEE International Conference on
Acoustics, Speech and Signal Processing, 1989.

[12] E. McDermott, "LVQ3 for Phoneme Recognition." Proc. of
Acoustical Society of Japan, Spring 1990.

[13] Y. Minami, T. Hanazawa, H. Iwamida, E. McDermott, K.
Shikano, S. Katagiri, M. Nakagawa, "On the Robustness of HMM and
ANN Speech Recognition Algorithms." Proc. of International
Conference on Speech and Language Processing, Kobe, Japan, 1990.

-9 -

	001
	002
	003

