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Abstract 
The essence of our approach is to address the important problem of discontin直ty

detection within the context of the overall visual recognition problem1. Awareness of 
the capabilities and expectations embodied in recognition algorithms and of the domi-
nant noise process in the surface properties computed by some early vision algorithms 
greatly simplifies the detection of discontin直ty.In particular, we describe the char-

acteristic "displacement" errors, that stereo and optical-flow algorithms produce near 
object boundaries and we suggest that the detected discontinuities, in light of these 
errors, must be restricted to a subset of intensity edges. This restriction simplifies 
discontin直tydetection and is valid under certain assumptions which we describe. 

We have detected discontinuities in depth and in the magnitude of optical flow 
for a variety of natural images by combining intensity edges and surface property 

data computed with early vision algorithms. The integration of surface properties 
is formulated as an optimization problem derived from a Markov random field. A 
massively parallel, stochastic relaxation algorithm for solution of these optimization 
problems is described. 

1 Prelude 

The detection of discontinuities is an important problem in computer vision. A discontinuity 

represents those locations in an image where some property of the surface in the imaged scene 

1 Portions of this work were performed in the Artificial Intelligence Laboratory at the Massachusetts 
Institute of Technology. A revised portion of this paper will appear in the IEEE CVPR 1991 conference 
proceedings. The original submission to CVPR'91 was dated 19 November 1990. 
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changes abruptly. Such changes are important because, under some general assumptions, 

they correspond for example to boundaries between objects (or subparts of an object) and 

to facets of an object's surface. Consequently, detection of discontinuities may facilitate seg-

mentation of an image into objects and possibly to symbolic representations of an image's 

components. In general, a discontinuity may arise due to a change in any property of a 

surface. Common examples of discontinuities include depth discontinuities from the recon-

struction of a surface from stereo depth and motion discontinuities from the reconstruction 

of a flow-field from optical-flow data. 

The surface properties computed by stereo and optical-flow algorithms are fraught with 

errors. These errors invariedably manifest themselves at first order discontinuities because 

surface properties are computed with algorithms which assume that surfaces are continuous. 

However, discontinuities are precisely those location where surface continuity is violated. 

These errors are so pervasive and have such a distinctive signature that analysis of the error 

can be employed as a discontinuity detector[l, 2]. Somewhat surprisingly therefore, few 

surface reconstruction algorithms have adopted a noise model consistent with this pervasive 

noise in the input data to surface reconstruction. 

The detection of discontinuities is difficult because the problem of surface reconstruction 

is an example of an ill-posed problem[3]. Surface reconstruction algorithms must disam-

biguate among the multitude of surfaces consistent with the noisy and sometimes sparse 

surface data provided as input. There is no apriori way to select among these surfaces; 

assumptions are required[4]. Assumptions are based upon known or otherwise desired prop-

erties of surfaces, such as smoothness, and also upon consideration of the noise processes 

that degrade the input data[5]. Ever more elaborate schemes simultaneously smooth sur-

faces, detect discontinuities, and smooth the discontinuities themselves[6, 7] and operate over 

multiple scales[S] for all orders of surface discontinuity[9]. Although surface reconstruction 

is interesting in its own right, is it possible that these elaborate surface reconstruction al-

gorithms are unnecessary when object recognition is considered the ultimate goal of vision 

processing? 

The essence of our approach is to address the problem of discontinuity detection within 

the context of the overall visual recognition problem. Awareness of the capabilities and ex-
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pectations embodied in recognition algorithms greatly simplifies the discontinuity detection. 

Essentially, the apriori knowledge about recognition imposes additional constraints on the 

surface reconstruction problem. Similarly an awareness of the pervasive noise process in the 

input data further constrains the surface reconstruction problem. On the next few pages 

we describe the characteristics of surface properties produced by early vision algorithms and 

also describe the capabilities of recognition algorithms. These two issues provide the basis 

upon which our formulation is based. 

1.1 Background 

Vision systems for unrestricted environments generally include an image processing stage 

known as early vision[lO]. Early vision algorithms compute the surface properties, such 

as depth, optical flow, and texture of the three-dimensional scene throughout the image. 

These computations are based on one or more two-dimensional images that are devoid of 

direct information regarding the physical properties of surfaces. The solutions to these 

early vision problems require assumptions regarding smoothness[ll] because, as in the the 

case of surface reconstruction, early vision problems are generally ill-posed[12]. Since the 

surface properties computed by these early vision algorithms are the inputs to the surface 

reconstruction algorithm, an examination of the dominant noise in the surface properties is 

of critical importance. 

In order to examine the noise in surface property data, we consider a typical early vision 

algorithm for the computation of optical flow[13]. Assume that two images exist, E1(戸） and 

恥(r'J,where r = X仝十 yyis a vector in the image plane (with axes x and y) and E(戸） is 

the intensity measured by the imaging device at pixel (x, y). The fundamental problem is to 

find the correspondence between each of the pixels in the two images. The x-y translation 

in image coordinates between the two corresponding pixels is the disparity, d(『）， where

記r = dx(rJ企十も（戸）y. A solution for d・ 1s found by rmmm1zmg 

I= j {¢[凡(f'),E亨＋叫＋入II(▽醒}d尻 (1) 

Because of the smoothing constraint, d(r) is a slowly varying function of r. If盈f')is assumed 

3
 



.、.「

Figure 1: Examples of noise in correlation detectors. For stereo disparity, regions with 
multimodal correlation are shown below the left image of a stereo pair. 

constant over regions of size A, then Equation 1 can be computed by finding d(r) that 

satisfies: 

max S (d(r)) = maxい[E⑰ ,E亨＋叫 dr. (2) 

S() is called the match score or correlation function; the computation is a correlation in 

布） across r. The analysis for stereo is similar except that for the computation of S(), r is 

restricted to lie on an epipolar line. 

The functional form of S() yields important information about the matching process[l]. If 

S() is multimodal then, generally, the smoothness constraint has been violated. This occurs 

near discontinuities in motion or depth where part of region A correlates well for, say, d1 but 

another part of A correlates well at d2. Examples of multimodal correlation functions have 

been presented for stereo[2] and optical flow[l]. Figure 1 contains three images; each image 

is accompanied by a binary map that highlights those pixels where the correlation function 

is multimodal. These binary maps were computed with a pixel-based stereo algorithm[2] in 

which efJ() of Equation 1 was the square of the difference between the intensity of each pixel in 
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Figure 2: An example of displacement errors in surface property data. The "sparse depths" 

picture is a close-up of the stereo depth data from a small region at the upper corner of the 

"BRAVO!" newspaper. 

a stereo pair. The figure shows that the multimodal regions always occur near discontinuities 

in depth and, in some cases, in places unrelated to discontinuities. 

The multimodal behavior manifests itself in the computed disparity field as a displace-

ment of disparity data. Displacement refers to one pixel near a discontinuity reporting the 

disparity of the pixels on the other side of the discontinuity; this displaced pixel in on the 

wrong side of the "actual" discontinuity. Figure 2 illustrates this displacement error; the 

surface with disparity 2 and 3 is corrupted by 5 pixels in the middle-left of the figure with a 

disparity of 12. The significance of these pervasive errors has been all but ignored in surface 

reconstruction and discontinuity detection algorithms1 

The simple question is how should a surface reconstruction algorithm handle these dis-

placement errors? Based on the disparity data only, a surface reconstruction algorithm must 

mark discontinuities as displaced from their actual location. Yet, clearly this results in an 

error in the reconstructed surface. In fact, for a surface reconstruction algorithm based 

on surface property data alone, there is no apriori method to distinguish displacement er-

rors. Additional information is required and hence integration of visual information must be 

1 A possible explanation as to why these errors have been overlooked is that most researchers in discon-
tinuity detection are also interested in edge detection (for example (14]). Edge detection is the process of 
finding discontinuities in intensity. However, because of the optics of image formation, intensity data is not 
plagued by displacement errors. 
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performed. 

Early work on intrinsic images[I5] suggested the importance of integration for recon-

structing surface properties and their discontinuities. Unfortunately, at that time, neither 

an appropriate mathematical foundation nor a basis for integration were elucidated. Only 

later did a unified mathematical approach (Markov random fields) and the notion of ob-

servable discontinuities[16] appear for integration. Observable discontinuities are a rough 

estimate of the discontinuities in surface properties and they can be derived, for example, 

from the match scores in correlation-based early vision algorithms. However as we have 

illustrated i五Figure1, these match scores and consequently observable discontinuities are 

themselves plagued by displacement errors. 

Early attempts at integration[l 7, 18] used intensity edges to guide the search for sur-

face property discontinuities while simultaneously detecting discontinuities. Because neither 

of these attempts recognized the pervasiveness of displacement errors, both formulations 

suffered from needless complexity and computational inefficiency. These complexities and 

inefficiencies will come to light in the next sections when the formulation and results are 

described. Prior to this however fully framing the vision problem demands a brief discussion 

of the capabilities and expectations of current recognition algorithms. 

Many types of recognition algorithms exist[19, 20]. However, for the discussion here, there 

are two key aspects of recognition algorithms: generally, they are capable of dealing with 

occluded contours and they explicitly discount the use of depth information[21]. Examples 

of model-based recognition algorithms based on 2D or 3D models from only 2D image data 

include constrained search[22], alignment[23], and grouping[21]. These algorithms use model 

and image features, such as lines, corners, and/or curves, derived from intensity edges. 

Variations in these features may arise due to viewpoint and illumination; one example is 

occlusion whereby one object obstructs the contour of another object. In practice, occlusion 

also may occur when an edge detector fails to identify an object's contour. The model-based 

recognition algorithm referenced above all account for occlusion by identifying objects when 

given only a portion of an object's contour. 

Besides occluded contours, images may contain spurious features that do not serve to 

distinguish objects. Elimination of this clutter can dramatically reduces the algorithmic 
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complexity in some algorithms[24]. 

2 Formulation 

In this chapter we exploit the information developed in the previous chapter to simplify 

the discontinuity detector. For the purpose of formulating the discontinuity detector the 

previous chapter can be summarized as follows. 

I-1 The assumptions inherent in surface property algorithms used in early vision produce 

displacement errors near the surface property boundary. These errors are pervasive. 

I-2 Model-based recognition algorithms account for occlusion of image contours. The com-

putational complexity of a recognition algorithm is improved by a reduction in the 

number of irrelevant contours. 

If, in addition to these items, we make explicit the fundamental assumption of passive vision 

algorithms: 

I-3 Changes in a surface property originate intensity variations in the image, 

then we have a prescription for a simple discontinuity detector. 

In our formulation, the detected discontinuities in surface properties must be a subset 

of the contours that would otherwise be used for recognition. The key here is to view 

discontinuity detection as a labeling process whereby labels, such as "depth discontinuity," 

are associated with each pixel along a contour. In this way, discontinuity detection is akin 

to the processes of saliency[25] or perceptual grouping[21]. Both these processes classify 

contours or contour pixels based on various measures such as contour length, smoothness, 

and colinearity. The discontinuity labels serve to further label the contours. The advantages 

of this subtle restriction that discontinuities be a subset of image contours are significant; 

these advantages are detailed below. 

Localization Because of the optics of image formation, the intensity variations in the image 

coincide with the projection of the discontinuity from the 3-D scene onto the image 

plane. Within certain edge detector constraints, the intensity edges derived from the 
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Intensity Image Intensity Edges (Canny) 

Sparse Depths with Edges (Close-ups) 
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Figure 3: The intensity edges (circles) are displayed with the sparse depth data (boxed 
numbers). With sparse data, the intensity edges eliminate the inherent uncertainty in dis-
continuity location. Also the intensity edges are smoother than the depth data noise allows. 
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image will be accurately located whereas, as describe earlier, the surface properties are 

particularly noisy near discontinuities. Also because early vision algorithms often use 

sparse features for matching, the surface properties may be sparse and consequently 

discontinuity location can be poor. By restricting discontinuites to intensity edges, the 

discontinuity locations will be as accurate as the intensity edges. Figure 3 shows this 

effect of discontinuity localization. 

Smoothness A major problem with surface reconstruction and discontinuity detection is 

the creation of an image model that embodies the assumption of smoothness and con-

tinuity of discontinuities. Within probabilistic formulations, many ingenious attempts 

have been devised to enhance the smoothness of discontinuities[5, 26, 27]. These at-

tempts all seek to overcome the local interactions mandated by probabilistic formu-

lations, such as Markov random fields (Mrfs). For deterministic formulations[7, 28, 

29], smoothness and continuity contraints are abandoned in favor of computabilil-

ity concerns. Further, multiple scale formulations[S] and even renormalization group 

formulations(30] are, at some level, attempts to extend the smoothness of disconti-

nuities beyond the local interaction regions common in these formulations. However, 

when discontinuities are a subset of intensity edges the smoothness of the discontinu-

ities is comparable to the smoothness of the intensity edges. Complex machinations2 

are no longer required to impose smoothness. Compare the smoothness of the intensity 

edges in Figure 3 with the possible discontinuities through the sparse region or with 

the noisy multimodal binary map in Figure 1. 

Displacement As Figure 2 illustrated, displacement errors from early vision algorithms 

cannot be eliminated unless additional information is provided. The restriction of 

discontinuities to intensity edges ensures that any surface property data that is not near 

an intensity edge and that differs from nearby surface property data will be considered 

a displacement error. The validity of this model rests upon item I-3 described at the 

2We refer, in particular, to Mrf formulations in which the specification of clique energies for the line 
process poses a major problem. 
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beginning of this section; surface property changes originate intensity variations.3 

Computability The three prior items: localization, smoothness and displacment, when 

embodied in a Markov random field, simplify the stochastic relaxation algorithm. The 

Mrf optimization function does not require complex neighborhood interactions to im-

pose smoothness. Furthermore, these items simplify previous deterministic formula-

tions for surface reconstruction[S, 7, 28, 29]. Consequently, hardware implementation, 

applicable to real images, may be possible. 

Focus The restriction of discontinuities to a subset of intensity edges emphasizes detection 

of discontinuities over reconstruction of surfaces. With this view, the discontinuity 

detector can be viewed as a type of perceptual grouping[21] algorithm in which the 

underlying physical event producing the intensity edge is used to label the edge. Recog-

nition is improved because discontinuities are provided, irrelevant contours are elimi-

nated from the features for recognition and the reduced number of features favor the 

recognition combinatorics. These improvements are identical to benefits derived from 

saliency and perceptual grouping algorithms although saliency and perceptual group-

ing derive their improvement upon inter-relationships between contours and contours 

pixels rather than upon surface property discontinuities. 

We now formalize the inputs and outputs for the discontinuity detection and the surface 

reconstruction problems. As the ,problem is framed eventually is a Markov random field, we 

also briefly discuss the parallel Gibbs sampler algorithm. Finally, the optimization function 

for our formulation is presented. 

2.1 Representation of the Surface and its Discontinuities 

We define the two-dimensional image as a lattice, S, where S = { s1, s2, •••,SN} and s 

identifies a site in the two-dimensional, N x N pixel array with total size N. Associated with 

3Frequently, texture discontinuities and isoluminant color boundaries do not produce intensity variations 
at discontinuities; these types of surface properties have fundamentally different noise properties and are not 
treated here. 
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Figure 4: A multivariate field composed of a feature process (small squares) and a disconti-

nuity process (large circle) in an 8-connected neighborhood is shown. When the discontinuity 

process is on, ls = 1, smoothing of the feature process is inhibited between all sites s'E Q 8 

for which ls, c:/ 1. 

each site is a site state space, A, with a size, lx and coordinates from the set { 0, 1, ... , lx -l}. 

A field is defined as X = { X8, s E S} where Xs EA. 

For our surface reconstruction and discontinuity detection, X will be a multivariate 

field[31] with X = {F,L}, Ax= AF・AL and ix = l叫.The field F = {fs, s E S} is the 

feature process which represents the reconstructed surface property. In general, fs can be 

continuous or discrete; however, because of the discrete nature of disparity data, we choose 

fs as discrete. The field L = { ls, s E S} is the discontinuity process.4 Following earlier 

work[32], the discontinuity process is a binary field with lL = 2, and ls E {O, 1 }. When 

[3 = l, the site s is labeled as a discontinuity. These fields are illustrated in Figure 4. 

The input to the surface reconstruction is comprised of two fields, Y = { G, E}. One 

field is the sparse surface property information, G; the other is the intensity edges, E. The 

surface properties are represented by two vadables, g8 and'Ys for site s. As in the case of 

fs, 9s is discrete. The variable'Ys encodes the sparseness of the early vision output and 

is defined as'Ys = l if input data exists at lattice site s; otherwise'Ys = 0. The intensity 

項 istorically,the discontinuity process, L, has been called the line process[5]. Although we maintain the 
label "L" for the field, we insist on the use of "discontinuity" to emphasis the fundamental differences between 
this and other approaches. In particular, our discontinuity process is not formulated on a dual lattice[5]. 
The dual lattice is composed of two binary processes; a horizontal and a vertical process which conceptually 
are located between lattice sites. These two process inhibit smoothing only between two neighbors; whereas, 
our discontinuity process inhibits smoothing between all neighbors as appropriate. 
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Figure 5: Displacement errors occur when the indicated discontinuity, is = 1, and the actual 
discontinuities, a8 = 1, do not coincide. The above plot shows the sparse and noisy surface 

property data, fs, and the misplaced indicated discontinuity. Item I-3 at the start of this 

section suggests that a8 = 1⇔ es= 1. 

edges, represented by the field E, are similar to the discontinuity process, L, except that 

when es = 1 a discontinuity may occur at lattice site s. When es = 0 the site s is strictly 

forbidden from marking a discontinuity with ls = 1. The field Eis typically computed with 

Canny's edge detector(33]. 

Figure 5 illustrates the displacement errors in the surface property data G. Let I = 

{ is is E S} be the indicated discontinuity field. is = 1 indicates that the derivative of surface 

property data is large at sites. Let A= { as Is E S} be the actual discontinuity field. as = 1 

identifies a real, physical discontinuity in the scene that is located at s in the image. A 

displacement error occurs whenら=0 and is, = 1 for sites s and s'such that as = 1 and 

s'~ s. (This is referred to as a displacement error at s'.) The goal of discontinuity detection 

is the computation of A; however, surface property data supplies I. Furthermore, because of 

displacement errors in the surface property data, A =/-I and therefore, without an integration 

scheme the discontinuity detector fails by producing L = I rather than L = A. 

As described previously, our integration scheme assumes that physical discontinuities in 

the scene originate intensity variations in the image. Consequently, the assumption for the 

image is A~E. Our discontinuity detection algorithm eliminates the displacement errors 

at s'by shifting the discontinuity from s'to {sles = 1}. The shift is performed by smoothing 

F while temporarily fixing L such that L = E. Subsequent to this smoothing, discontinuity 

detection is performed. 
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This two-phase algorithm, shifting then detecting, produces a significant advantage. The 

problem of discontinuity detection becomes akin to edge detection whereby a linear operation, 

smoothing, eliminates noise and then a nonlinear operation, maximizing a gradient or finding 

zero-crossings, locates edges. This advantage arises precisely because of our awareness of 

the dominant noise process in early vision algorithms, namely displacement errors, and 

because of the fundamental link between physical discontinuities and the scene and intensity 

variations in the image. Two points should be noted. First the noise process assumed by 

edge detectors differs significantly from the noise process that dominates surface property 

data, yet a similar two-phase algorithm is appropriate. And second, a two-phase algorithm 

can be implemented within the Markov random field (Mrf) paradigm or within paradigms 

significantly more efficient than Mrfs. 

2.2 MRF Specification and the Parallel Gibbs Sampler 

Markov random fields have been used extensively for image analysis[34]. In this section we 

describe a parallel stochastic relaxation algorithm that significantly improves the computa-

tional performance when the site state space size is large. Rather then describing the Mrf 

formulation in detail we assume some familiarity with Mrfs and present just the aspects 

related to the parallel implementation. 

The degree to which an Mrf can be made parallel depends on the neighborhood system 

Q of the lattice sites S. This Mrf neighborhood, Q, is defined as Q = { Q s, s E S} where Q s 

satisfies: 1) s (j Qs, and 2) s E Qr ⇔ r E Q8. Those sites s that can be updated in 

parallel are determined as follows. Let s* be any set of sites and Qs• = { sis E Qr, r Eぶ｝

be all neighbors of s*. A color is a sets* such thats* (j Qs•·The lattice chromaticity[31, 6] 

is the minimum number of sets s* that fully cover the Mrf lattice S. Each site s E s* 

can be computed simultaneously. Figure 6d shows the lattice colors for the 8-connected 

neighborhood; the degree of parallelism is N /4. 

The implementation of the Gibbs sampler[5] as a parallel computation is referred to as 

the parallel Gibbs sampler (PGS). The parallel implementation computes 

P(Xs• = ws•IXr =w,r E Qs•) =—e 1 分 I:cec,.Uc(w••) 
Zs• 

(3) 
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Figure 6: An 8-connected (c = 2 or next-nearest-neighbor) Mrf graph with cliques and lattice 
chromaticity: a) The Mrf lattice (open and filled circles) and the next-nearest-neighbor sites 
shown with ,open circles, b) The corresponding Mrf graph, c) All clique types for the 8-

connected neighborhood, and d) the chromaticity. 

with 

Zs•= 区 e-江cec,. Uc(w). 
咋 A

Clique energies are given by Uc(w); the sum in the exponential is over the cliques containing 

the site s. At each iteration in the relaxation, a new state, w八isgenerated that may differ 

from the old state, w, at every site s E s*. This new state is generated by sampling the 

distribution of Equation 3. Sampling this distribution at a single sites requires computation 

of the exponential and Uc(研） for all叩 EA.

The essence of the PGS algorithm is that, besides the parallelism over the lattice sites, 

computation of Equation 3 is parallel over the site state space, A.. Note that computation 

of Zs is inherently serial over A. However, for hypercube connected parallel computers, 

such as the Connection Machine, Zs is computed as O(ln l) (where l is the size of the site 

state space). Also, in practice, computation of Uc(ws) and the exponential is most time 

consuming; whereas the sum in Zs over A is trivial. Obviously, for large site state spaces the 

improvement in computation can be significant. 
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Figure 7: An illustration of the CM configurations for the computation of the PGS algorithm 

on a 4-connected neighborhood .. The top grid is the CM layout for the image configuration. 

Each circle, filled or empty, represents a CM processor associated with an image pixel. The 

bottom grid is the CM layout for the PGS configuration; it is two dimensional: one dimension 
with a coordinate for each pixel of a given color, and anther dimension with a coordinates 

for each state in the lattice state space. For the PGS configuration, all processors along 
the state dimension compute the Mrf energy simultaneously with the same neighborhood 
configuration. The neighborhood configuration at a sites is represented by a "bundle" that is 

passed between the image configuration and the corresponding site in the PGS configuration. 
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The PGS is implemented by allocating one CM processor for each pair of site, s E s*, 

and lattice state, W8 E A. This layout is displayed in Figure 7. For the PGS layout, the CM 

configuration is two dimensional with one site d切nensionand another state dimension. Each 

processor along _the state dimension in this PGS layout contains the Mrf fields, Xs and Ys, 

and the neighborhood fields {Xrlr E Qs}-These fields are required to compute Equation 3. 

The performance of the PGS algorithm is described elsewhere[32]. 

2.3 MRF Energy for Discontinuity Detection 

The previous sections described the Mrf external field, Y = { G, E}, the Mrf fields repre-

sen ting the surface, X = { F, L}, and the stochastic relaxation algorithm. In this section the 

Mrf posterior energy that relates these fields is presented. This posterior energy embodies 

our assumptions regarding smoothness of surface properties and discontinuities as well as 

the assumptions underlying the integration of intensity edge information which facilitates 

the detection of discontinuities. 

The Mrf posterior energy at site s is related to the clique energies of Equation 3 by 

Us(XIY) =区cec.Uc(w). For our discontinuity detection scheme this posterior energy is 

仏(XIY)=~Us -fs1)燒叫＋狐）+ Us -9s)2,s(a + a'し）＋し((3十炉es) (4) 
s'EQs 

The neighborhood Qs for this formulation is 8-connected and the only cliques with a non-zero 

potential are the pair cliques shown in Figure 6. We show the equation in its most general 

form in which smoothing of F occurs both in regions (ls = 0) and along contours (ls = 1) 

with potentially different couplings of入and(入＋入')respectively. This first term ensures 

that F is smooth Us ~ fs,) between neighboring sites where 81,1,, = 1. When 81.1,, = 0 the 

smoothing between sites s and s'is broken and this first term does not contribute to the 

posterior energy. 

The second term in this equation is the coupling between the feature process, F, and the 

sparse and noisy input data, G.. The coupling factors, a and o:', are related to the noise 

in g. For noiseless data, a→ oo thereby ensuring fs = 9s• Otherwise, when a = 0 no 

input data coupling occurs and f is smoothed by the term involving Us -f8,)2. Once again 
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different couplings between F and G in regions and along contours can be imposed with the 

terrn (a+ a'ls)-The precise relation between a and the noise depends on the noise model 

assumed. As this noise process is unknown, values of a and a'are empirically determined. 

The last term in Equation 4 implements the integration scheme between surface property 

discontinuities and intensity edges. The goal for this term is to encourage discontinuity 

formation where intensity edges exist (e8 = 1). The parameters /3 and /3'are chosen to 

facilitate discontinuity formation when e8 = 1 and to forbid discontinuity at sites where 

ら=0. Conseqently, 0 < (/3 + /3') < < /3. The reduced penalty at an intensity edge 

produces an increased probability for discontinuity formation. The penalty, (/3 + (3'), to 

form a discontinuity at an intensity edge should be comparable to the penalty for smoothing 

（～入Us-fs1)りwhenthe difference Us -j8,) is larger than the noise. In this way, surface 

property changes larger than the noise should form a discontinuity; whereas, smaller changes 

should be smoothed. 

3 Results for Discontinuity Detection 

In this section results obtained with the Mrf formulation described in the previous section are 

presented for a variety of images. As noted previously, discontinuities are detected in a two-

phase process: first smoothing to eliminate the displacement errors and then discontinuity 

detection. The Mrf formulation embodies both phases. Before illustrating the discontinuity 

results, we describe the "free-field" behavior of the Mrf and then describe briefly the Mrf 

initialization and smoothing procedures. 

Free Field Free Field refers to the Mrf response when no input is provided and it mea-

sures the Mrf's compliance with the prior assumptions embodied in the posterior energy of 

Equation 4. The free field is produced by setting 9s = 0 and es = 1 for alls E S. The PGS 

algorithm is then used to generate the invariant distribution of the Mrf; the ergodicity of 

the stochastic relaxation simplifies the computation of MAP or MPM states[6]. 
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Figure 8: Closeup of the Mrf free field for (/3 + /3') = 5.0, 入=1.0 and (入＋入')= 0.1 in 
Equation 5. 

For the free field, the Mrf's posterior energy becomes 

Us(XIY) = I: Us -fs1)梵叫＋狐）＋し(/3+ /3'es) 
s'EQ, 

(5) 

The PGS algorithm used a linear annealing schedule for the temperature that decreased from 

T = 25 to T = 1 over 100 iterations. After 100 iterations the temperature was fixed at T = 1 

and statistics were gathered for the feature process, F, and the discontinuity processes, L. 

The discontinuity process was binary, lL = 2 and the feature process used lF = 16; the total 

sites state space size was lx = 32. The PGS algorithm operates across the entire state space 
simultaneously rather when alternating between the feature and discontinuity process as is 

common is most relaxation algorithms based upon a dual lattice discontinuity process. The 

initial Mrf state for F and L was random and the neighborhood was 8-connected. The lattice 

size was 256 x 256 pixels. 

Figure 8 illustrates a free field state produced by this energy. The computed disconti-

nuities, L, are relatively smooth and continuous. These two properties extend over several 

pixels. Within the regions and along the contours, the surface, F, is smooth. The choice of 
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parameters for this free field Mrf is empirical. The extent of the smooth regions and the num-

ber and length of discontinuities can be varied to a limited extent by adjusting ((3 + (3')[32]. 
Also, it is generally the case that (入＋入')~ 0 in the first term of Equation 5. This condi-

tion ensures that whenし=1 the contribution from this term is nearly zero but that some 

coupling between the feature process will smooth along the contour as well. Results such as 

those in Figure 8 guide the selection of parameters for the discontinuity detection. 

MRF Initialization Successful detection of discontinuities rests, in part, upon the ini-

tialization of the Mrf. With a thoughtful initialization, the convergence time for the Mrf to 

reach a steady state is reduced and Mrf algorithmic concerns, such as annealing rates, and 

statistics gathering, are less critical. This improvement arises when the initial state is close 

to the desired result. With integration, the intensity edges serve as the initial postulate for 

the surface property discontinuities. ・with this postulate, the surface property data can be 

smoothed to eliminate displacement errors. 

Figure 9 portrays the raw input data from a feature-based stereo algorithm[2). The pic-

tures labeled "Sparse Depths" and "Depths Exist" are the outputs from the stereo algorithm. 

"Depths Exist" is a binary field corresponding to布 (inEquation 4) whereas the "Sparse 

Depths" corresponds to 9s• The picture labeled "Intensity Edges" of Figure 9 are derived 

from the intensity image with an edge detector, typically Canny's[33]. Before serving as the 

external field E, the intensity edges are made 4-connected, as required by the 8-connected 

neighborhood and the form of Equation 4, to fully decouple neighboring depths. These types 

of inputs comprise the external field Y and are common for the different images presented 

su bseq uen tly. 

Following these inputs, the Mrf field, X = { F, L} can be initialized. Theoretically, X 

should be randomized (or the initial temperature should be high enough to randomize X) 

thereby guaranteeing convergence to the global minimum of U(XIY). However, by selecting 

an initial state that is close to the desired result, the computational requirements are reduced. 

We choose the initial state to exhibit the smoothness and continuity already embodied in 

Equation 4. The discontinuity process, L, is initialized to the 4-connected intensity edges E. 

With this initialization, L is both smooth and continuous. Since the input surface properties 
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Intensity Image 

Canny Edges, E Sparse Depths, G Depths Exist, 布

Figure 9: The "Intensity Image" is the left image of the original stereo pair. The other three 
pictures are the raw inputs for discontinuity detection and are labeled with the Mrf field 
that they represent. 
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are sparse, the feature process F must be filled for initialization. 

Filling the regions in F is accomplished by growing about the pixels where depth data 

exists. This is "brush fire filling." However, since the initial discontinuity field is known, 

this filling is performed while inhibiting growth across a discontinuity. The discontinuities 

constrain the filling and thereby ensure that a discontinuity is not smoothed away. The 

first column in figure 10 illustrates the results of this initialization. The top picture in this 

column is the filled depth map; whiter pixels are closer to the cam~ra. The two pictures 

below are close-ups of two small.regions within the 256 x 256 image. The squares show the 

sparse depths; the circles are the intensity edges. Note that this filling procedure correctly 

restrains the surface except when a displacement error occurs. As the middle picture (at 

pixel (90 85)) illustrates, displacement errors still persist. 

3.1 Depth and Motion Discontinuities 

The First Phase: Stochastic Smoothing Recall the goal of this first phase: eliminate 

the displacement errors. The indicated discontinuity at is, must be shifted to the actual 

discontinuity at a3. Of course the actual discontinuities, A, are unknown; but, since we 

assume A C E, we can shift the indicated discontinuities to e8. This technique, as detailed 

previously, is one of the primary advantages from integrating intensity edges with surfaced 

properties and its use is mandated by the pervasive displacement errors. The shift is accom-

plished within the Mrf framework by smoothing F while temporarily fixing L = E. The PGS 

algorithm performs the smoothing stochastically; fixing L = E is accomplished by annealing 

the parameters f3 and /3 of Equation 4. These parameters determine the difference in surface 

property required to turn on 9'discontinuity. If (/3 + /3') << 0 and /3 >> 0, then L = Eis 

:fi xed as the stochastic relaxation algorithm proceeds. Only F varies and, when a is small, 

the surface properties are smoothed. 

The second column in Figure 10 illustrates the effect of stochastic smoothing for the data 

of Figure 9. The middle picture which was previously dominated by a displacement error 

(compare with the first column filling results) is no longer plagued by this error. Instead 

the discontinuity has been correctly shifted. The discontinuity process prevented smoothing 

of the surface properties across intensity edges; the indicated discontinuities now appear 
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b)Stochastically Smoothed Depths 

畜
”

Figure 10: The depths in the "Newspaper" scene are filled as shown in the first column (a), 
and then stochastically smoothed as the second column illustrates (b). Close-ups of the Mrf 
fields, X and Y, are also shown. 

22 



Intensity Image Intensity Edges (Canny) Depths (Filled) 

Newspaper 

Figure 11 

Discontinuities 
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coincident with the intensity edges. 

The Second Phase: Discontinuity Detection Results Figure 11 shows the object 

boundary identified by the Mrf when intensity edges are coupled with the depth data from 

stereo. The format of this figure is used throughout this chapter and it warrants a brief 

description. The upper row of Figure 11 contains the Mrf inputs that comprise the external 

field. Depending on the early vision module, the intensity image is one of the stereo pair or 

the motion sequence. The intensity edges, E, and the initial state for L are derived from 

Canny's edge detector. The "filled" picture in the upper row is the initial state of F; its 

derivation was described and illustrated in detail in the previous sections. The lower row in 

Figure 11 is the output from the Mrf process. The "depths" picture is the field F and the 

MPM estimate for the discontinuity process is displayed in the "discontinuities" picture. 

In Figure 11 discontinuities are well localized, smooth and continuous. A significant 

displacement error along the top edge of the stack of newspapers is smoothed away and its 

depth discontinuity is located properly. The significantly small object in the upper right is 
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Intensity Image Intensity Edges (Canny) Depths (Filled) 

Xerox Paper 

Figure 12 

Discontinuities 
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partially extracted; texture, unrelated to depth discontinuities, is eliminated. 

The example of Figure 12 is more difficult for this integration scheme than the previous 

figure. 

tinuity. 

Figure 12 contains several objects each with different magnitudes of depth discon-

One object is sloped significantly and, because the sloped surface also contains 

significant texture, could yield multiple, misplaced boundaries. However, in spite of this, the 

integration scheme still yields a reasonable map of discontinuities. Notice the displacement 

errors near the boundaries in the "depths" picture of Figure 12. In particular, the left side, 

for the left camera in a stereo pair, cannot match the occluded region. Consequently, a dis-

placement problem arises and the smoothing of the Mrf helps constrain the discontinuities 

to the intensity edges. 

The next set of images deal with the optical flow data[13]. The optical flow is a vector 

:fi eld in the 2D image plane. The vector indicates the displacement between corresponding 

pixels in a time sequence of images. As an external :field, G, for the Mrf, the magnitude of 

the optical flow is used. Consequently, only discontinuities in the magnitude of the optical 

flow are identified. The random :field F remains a scalar :field. 

、嵐

、2

24 



Intensity Image Intensity Edges (Canny) Motions (Filled) 

Ice Cube Tray 

Figure 13 
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Discontinuities 
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Intensity Image Intensity Edges (Canny) Motions (Filled) 

Teddy with Jacket 

Figure 14 

Discontinuities 
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Figures 13 and 14 show examples of motion discontinuity detection. Comparison between 

the filled motion picture and the motion picture in these two figures once again illustrates 

the displacement errors and the smoothing required to eliminate this error. In practice, the 

motion algorithm produces a noisier result compared to the stereo algorithm. However in 

these cases, the motion discontinuities are accurately computed. 

3.2 Without Intensity Edges 

Figure 15 compares discontinuity detection with and without intensity edges for several 

images. As this figure illustrates, when intensity edges are not integrated with surface 

property data, the detection of discontinuities deteriorates. Without intensity edges, E is 

zero for all sites s E S and the penalty to form a discontinuity becomes (3 throughout the 

image. In addition, without intensity edges, the initialization process changes. Brush fire 

filling is used to make the sparse input data, g8, dense; but, filling while respecting the 

intensity edges and deterministic smoothing can no longer be used. Because of displacement 

errors, indicated discontinuities are found; not actual discontinuities. All four images of 

Figure 15 are plagued by this type of error. Also, several small discontinuities are missed 

compared to results with intensity edges. 

In general, the discontinuities identified without intensity edges are not as smooth as 

when integration is performed. Increasing the clique size for the discontinuity process by 

one or two pixels does not significantly improve the discontinuity smoothness. In some 

situations, the discontinuities produced without integration are continuous or closed relative 

to discontinuities with integration. This additional continuity sometimes produced without 

integration is of little consequence compared to the accuracy achieved with integration. 

4 Summary 

We have detected discontinuities in depth and in the magnitude of optical flow for a variety 

of natural images by combining intensity edges and surface property data computed with 

early vision algorithms. The detected discontinuities are consistently smoother and better 

localized relative to the discontinuities detected without the benefit of intensity edges. 
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Intensity Image 
Discontinuities 

Without Integration With Integration 
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Figure 15: A comparison between discontinuity detection with and without integration of 
intensity edges. The second row is a synthetic depth image that was designed to test common 
problems in discontinuity detection. Namely: displaced data, missing intensity edges, steeply 
sloped surfaces and circular boundaries. The bottom two rows contain the discontinuities in 
depth and motion for the identical image shown. 
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There are two major differences between this work and prior work[18] on integrating 

intensity edges with surface property data. First, here the discontinuity detection is per-

formed explicitly in light of the capabilities of reco~nition algorithms. This suggests that, 

since most model-based recognition algorithms recognize objects based on shape and handle 

contour occlusion, a discontinuity detector that potentially sacrifices some contour pixels in 

order to produce smooth and well localized contours is preferred. Second, over the past years 

it has become apparent that the pervasive errors in surface properties computed by early 

vision algorithms are not Gaussian distributed errors at every pixel but rather displacement 

errors at discontinuities. Gaussian distributions as models of error may have been adopted 

in Mrf techniques for surface reconstruction not for their relevance to the noise in real sur-

face property data but instead for their solvability. These two factors reshape the surface 

reconstruction problem with important simplifications. 

Herein we have described the conditions underwhich the surface reconstruction can be 

simplified. The primary assumption is that surface property changes originate intensity vari-

ations. Since in our formulation discontinuities must be a subset of intensity edges, if an 

intensity edge is not produced at such a change in surface property then the discontinu-

ity will not be detected. Aside from systematic cases like texture, this situation can arise 

due to-imaging errors, such as underexposure or overexposure, or from edge detector short-

comings. However, recognition algorithms operate even when image contours are missing; 

consequently, the affect of missed contours due to edge detector failings is minimized by the 

capabilities of recognition algorithms. 

The simplification and results presented are as follows. First, since discontinuities are a 

subset of intensity edges, the detected discontinuities are as smooth and well localized as the 

intensity edges. Without the need to impose smoothness on the discontinuities, the entire 

notion of "line process clique configurations" [5, 27] can be discarded. Second, the notion 

of the dual lattice is discarded in favor of a single, binary discontinuity process. Third, 

displacement errors are eliminated based on a Mrf formulation that first smoothes then 

detects discontinuities. This approach is mandated by the displacement errors and produces 

good results in the Mrf formulation. Other non-Mrf formulations may be possible[29, 35] 

based on these simplifications. Besides these results, we briefly have also presented the 

亀
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parallel Gibbs sampler algorithm. This stochastic relaxation algorithm improves the solution 

of optimization problems when the site state space is large. 
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