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Mathematical Connections between

the probability, Fuzzy set, Possibility and Dempster-Shafer theories

Philippe QUINIO

Auditory and Visual Perception Research Laboratories

Advanced Telecommunications Research Institute

1. Introduction and Outline

Expert systems have been regarded by many as the single most important contribution of Artificial Intelligence
(AI) to engineering and science in general. The Al community however, has been increasingly aware, over the past few
years, of the fundamental limitations of rule-based systems when trying to match human beings in solving complex
problems. It has also become increasingly clear that these limitations are at least partly related to the inability of
standard (predicate) logics to deal with uncertain, imprecise or fuzzy information.

The need for a new framework that would overcome these difficulties has triggered a huge amount of research since
the pioneering works of L.Zadeh (1965) and G.Shafer (1976, [1]). The result of these efforts was the proliferation
of “new theories” for the representation of uncertainty, imprecision or fuzziness in Al, including the Upper/lower
probability framework, Dempster-Shafer (DS) theory of Evidence (Belief/Plausibility functions), Possibility theory
(Possibility /Necessity measures), Fuzzy set and Random Closed Set (RACS) theories...

The authors of these theories spent much of their energy trying to isolate them and prevent external criticism or
comparison with other scientific theories. This is quite natural under such circumstances and, as a matter of fact,
played a positive role as a protective shield for their growth in the early stages.

We believe however that the time has come for a systematic in-depth theoretical comparison. The mathematical
links between the Random Closed Set formalism, of which section 2 recalls the basic conceptual and technical
background, and topological versions of the above mentioned theories are investigated in detail in section 3, the
basis for comparison being purely axiomatic. The RACS theory emérges as a sufficient conceptual and mathematical
framework for the representation of uncertainty, imprecision and fuzziness. The underlying topological setting makes

it sufficiently general so as to encompass all Al problems, but not so general so as to include useless, experimentally
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inaccessible mathematical abstractions.

Section 4 provides a discussion about the necessity and the usefulness of theoretical comparisons in the context of
Artificial Intelligence, with a particular emphasis on the axiomatics/interpretation dilemma.

Since the RACS theory is merely an application of general probability measure theory to a topologically meaningful
subpart of the power set of a Universe U equipped with a topology derived from that of U itself, the tone of this
paper might appear somewhat retrograde. We insist, however, on the practical usefulness of the above theoretical
comparisons, that go far beyond mere scientific conscientiousness. And we show at length in section 5 how such
comparisons can be exploited in order to compensate for theoretical weaknesses in the above formalisms and yield
useful hybrid techniques. An important result characterizes the Mean probabilistic operation as the only order-
independent, piecewise and point-compatible combination for constructing general Belief, Plausibility or Fuzzy set
membership functions from subsets of a Universe. This reduces the possible choices of a construction scheme in

systems where the sources of information are not human, or at least not only human.
2. Conceptual and technical background in RACS theory

2.1 Imprecision, Uncertainty and Random Sets

Imprecision is a set-theoretic concept: a piece of information is said to be imprecise (with respect to a given Universe
U) if it can be represented by a subset of ¢ but not by a single element of U . In physics, for instance, (U =R), a
measurement is said to be imprecise whenever its value lies within an “error interval”, and in fact, the result of the
measurerment is not a real value but the interval itself.

Uncertainty is a probabilistic concept, and in fact, the whole theory of probaBility measures was precisely created
to quantify uncertainty. Several recent works ([2], [3]) suggest that the axioms of probability theory are in fact the
only ones that are compatible with the usual intuitive concept of “uncertainty”. The measure-theoretic concept of
measurable mapping leads to the fundamental tool of random variable from a measure space to a measurable space.
When working in a Universe i , the straightforward (and classical) approach is to use random variables taking values

in U itself, i.e. random points of i .

When dealing with problems that involve both imprecision and uncertainty, it seems natural to use random sets
instead of random points of . A random set is a measurable mapping from a probability space (2, Zq, Prob) into

a measurable space (P(U), Zpu)) where Lp(y) is a o-algebra over P(U). Like any other random variable, a random
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set X is entirely determined by its probability distribution P’ defined on Xp(y:
VAE Zpw),  P'(A)=Prob(X~'(A))=Prob({w €Q, X(w) € A}) noted Prob(X € A)

For instance, [4] (p.41) considers the o-algebra generated by the sets My = {A € P(U), I C A} and M{ =
{AePU), I'NA = 0} where I,I' € T are two finite subsets of Z. From the classical Kolmogorov Extension
theorem, it follows that any random set X defined with this c-algebra is eﬁtirely determined by its space law
T: T'(I)=Prob(XNI#0) VIieZ (see also [5]).

We can also take Zpy) = P(P(U)), in which case we obtain the most general class of random sets.

2.2 Topology

We believe, however, that Set theory is too general for practical problems, and that topology is needed to select
the only physically plausible (and practically useful) sets from the huge number of general subsets of a (possibly
uncountably infinite) Universe. As a matter of fact, no experiment will ever be able to distinguish between the real
and the rational numbers, for example, and thus, for all practical purposes, we might just as well merge these two
concepts. More generally, we might as well merge any set A C R with its topological closure A4, and its topological
interior A (the topology considered here being induced by the usual Euclidean metric in ®).

There is yet another reason why we need topology: we would like to give a mathematical meaning to the intuitive
concept of the continuity of a mapping and this is done by introducing a topological structure on both the definition
and the value sets of the mapping. Similarly, the intuitive concept of the convergence of a sequence of points is defined

rigorously in a topological framework.

Thus, we shall assume that (U/,T) is a topological space, T being the set of opens of /. In general, one can
define many different topologies on the same Universe U , most of them being trivial or “pathological cases” (such as
a non-discrete topology in a finite set, or the coarse topology where only constant functions are continuous...). As
these topologies do not suit our purposes (what would be the use of a topology that rﬁakes all non-constant functions
discontinuous?!), we have to discard them by assuming a few basic properties on (U, 7): the Hausdorff property
and local compactness. Then, we explicitly state that two subsets with the same closure and the same interior are
undistinguishable, which leads to considering a quotient space modulo this equivalence relation. This quotient space

may be identified with a subset of O(U) x F(U), which naturally leads to either the theory of Random Closed Sets
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(RACS) or the theory of Random Open Sets (RAOS). Both are basically equivalent to each other and we may

arbitrarily select RACS.

2.3 Random Closed Sets and the Choquet theorem

Starting from a locally compact Hausdorff! topological space (U,T), we can equip the set F U) = U of all
the closed subsets of (U,T) with & topological structure 77, called the Hit or Miss topology: it is the topology
generated by the (open) sets Op, = {F € F(U), F hits 0} = {FeFU), FNO # 9} for all opens O € 7 and by.
the (open) sets O'% = {F € F(U), F misses K}y={FeFU), FNK = @} for &ll compacts K € K. The opens
0'=0p,N0p,N---NOG_N oK = {F € F(U), F hits Oy,...,0, and misses K} where Oy,...,0y is a finite
family of opens and K is a compact of U , form an open base for T,

The intuitive idea behind this topology is as follows: the more two closed sets F; and F3 hit the given family of
opens O1,0;,...,0, and miss (ie. fail to hit) a given compact K, the more they are said to be “neighbors” (figure
2). It can be shown ([4], p.3) that &’ equipped with the Hit or Miss topology T’ above is compact (and Hausdorff),

which guarantees the existence of topological probability measures on U ‘.

A Random Closed Set (RACS) of (/,7) is simply a random variable defined on an underlying probability space
(Q,Zq,Prob) and taking values in the (compact) measurable topological space (F(U),L'), where ¥’ is the Borel
o-algebra of (U’,T’). The distribution P’ of a RACS X is such that: Prob(X € A') = P/(A’) for every event A’ in

the g-algebra ¥/ and entirely determines X.

The above definitions should be sufficient to elaborate a formal theory of Random Closed Sets. However, such a
theory would not go very far unless an additional property of (U,T) is assumed. As a matter of fact, we shall be very
much concerned with continuity: a mapping f : F(U) — R, for example, is continuous iff the inverse images f~1(0)
of any open set O C R is an open set in F(U). This can be simplified if the topology T' of F(U) admits a countable
base of open sets: the real sequence {f(Fn)} converges in R towards f(F') whenever a sequence {F,} converges in
F(U) towards a limit F. It can be shown ([4] p.3) that if (i/,7T) is second countable (i.e. T admits a countable
base) and locally compact, then (F(U),T") is also second countable (and locally compact). By a well-known result,
this implies that both spaces are metrizable, i.e. there exists for each of them a metric compatible with its respective
topology (see figure 1 and [6]). This remark greatly simplifies the convergence criterion and hence most continuity

problems: from the definition of the Hit or Miss topology, we know that a sequence {F,} converges in F(U) towards a
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limit F iff any open O hitting F', hits all the F,, except at most a finite number of them, and any compact K missing
F, misses all the F,, except at most a finite number. In the locally compact second countable space U , this criterion
simplifies into: a sequence {F,,} converges in F(U) towards a limit F' iff for any point = € U, the sequence {d(z, F,,)}
converges in Ry towards a limit f(z) with F = {z : f(z) = 0}, where d(z,y) is any metric in & compatible with its
topology and d(z, F) = Inf{d(z,y), y € F} is the “distance” between point = and the closed set F.

From here on, we shall assume that (i, 7) is locally compact and second countable, hence metrizable. d(z,y)

will denote any metric compatible with 7 and d(z, F') (for z €/ and F € T(U)) will be defined as above.

The construction of the RACS theory is summarized in table 1. More details can be found in [7], 8], [9].

We recall the following fundamental theorem due to Choquet and proved by Matheron ([4]) in a probabilistic

framework:

CHOQUET THEOREM. A RACS X is entirely determined by the functional Tx defined on the set K of
compacts of U by: Tx(K) = Prob(X hits K) = Prob(X N K # 0), VK € K. Conversely, a functional
T on K defines a (unique) RACS X verifying Pfob(X hits K) = T(K) iff it is an alternating Choquet
capacity of infinite order verifying T(0) =0 and T(K) <1, VK €K,
ie. iff it verifies:
(i) VKek T(K)<1
(i) TM@ =0
(iii) T(K,)|T(K) whenever K, | K  (sequential continuity) )

(iv) Vn>0, V(Ko,Ky,...,K,) € K™, S, (Ko; Ky, ...,Kn) >0 with S, defined by :
S]_(.Ko; .Kl) = T(.Ko U I{l) — T(.Ko) and

Vn > ]., Sn(.Ko; .Kl, ey I{n) = Sn_]_([<(); .Kl, ey -Kn—l) — Sn-—l(I{O U I{n; .Kl, . I{n_l)

Condition (iv) can be written in a more concise formula:

(iv)) Vn>0, ¥(Ko,K1,...,Kz) € K™, Tx(Ko) < Y (- Tx (KU K))
. IC{1,...,n} iel

Condition (1-iii) is in fact equivalent to the upper semi-continuity of T on K ([4] p.29). Ty is called the hitting
capacity (functional) or the incidence capacity of X. The term avoidance function was used by Kendall ([10]) to

designate the functional Qx =1 — Tx.




Tx plays a role somewhat similar to cumulative probability distributions of real-valued random variables and it

turns out that many properties of X can be characterized by properties of Tx (cf. table 2).

It is clear that Tx is increasing and attains in K its infimum 0 (at @ € K), but there is no reason why it
should attain its supremum Sup {T(K ), K € IC} < 1. Hence, it may happen that no compact Ko exists such that
Tx (Ko) = Sup {T(K), K € K}. However, when the RACS X is almost surely included in a (deterministic) compact
Ky, and in particular when ¢/ itself is compact, T attains its supremum. This results from the fact that “U compact”
implies “C(U) = F(U) compact” and we know that any u.s.c. function defined on a compact topological space attains
its supremum.

In fact, the functional Tx can be readily extended to the set B(U/) of the Borelian subsets of i/, and even to P(U)
itself since T is u.s.c. on K (see [4], pp.29-30):

VB € B(U), T%(B)=Sup{Tx(K), Kek, KC B}

VAePWU), Ti(A)=Inf{T%(0), 0€T, AcCO}
and T% and Tx coincide on K, so that in all cases we may write: Tx () = Sup {TX (K), K€ IC}, so that Tx attains
its supremum in F(¥) (and not generally in K C F(U)).
Note that, even if & is compact, this supremum may be strictly smaller than 1. As a matter of fact:

Tx(U) = Prob(X NU # §) = Prob(X # 0)
and thus VK € K (= F), 0<Tx(K) <Prob(X #0)<1

The supremum equals 1 iff X is an a.s. non-empty RACS (Prob(X = 0) = 0), i.e. a random variable taking its
values a.s. in F/(U) = F(U)\ {0}. Matheron ([4]) showed that F'(I/) is compact iff ¢ itself is compact. If this is the

case, {0} is an isolated point in F = K.

Another functional often used in practice is the “implying functional” Rx defined on K by: Rx (K) = Prob(K C
X). The set {F €F, K C F} is a closed set in (F(U),7"), hence an event of ¥/ and its probability is well defined.

Ryx is decreasing, with Rx(0) = 1.

2.4 Random Closed Sets in compact spaces

The case when (U, 7T) is a compact second countable (Hausdorff) space is of interest for the rest of this paper.

The CHOQUET theorem states that a RACS X is entirely determined by the probabilities Tx(K) =

Prob(X hits K) for K compact, but it is equally determined ([4], p-30) by the probabilities Tx(O) = Prob(X hits O)
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for O open in U, or equivalently by @x (0) = Prob(X misses O). By noting that X misses O <= X C O°, we see
that a RACS X is entirely determined by the probabilities Prob(X C F') for F € F closed. In a compact space U ,

the closed subsets are exactly the compact subsets (X = F) and the functional Px defined by:
Px(K) = Prob(X C K), VK € K(=F) (2)

entirely determines X, as does Tx (or Qx)...

The necessary and sufficient conditions for a functional P to define a RACS X (by Px = P) are obviously:
(i) VKeK, P(K)>0
(1) PU)=1
(i) P(K,) | P(K) whenever K, | K (sequential continuity) (3)

(iv) Vn >0, V(Ko Ki,...,Kn) €K™, Px(Ko)> Y (-DVH1Px(Kon () Ki)
Ic{,..., n} iel

(P is a monotone Choquet capacity of infinite order satisfying P({) = 1 and P > 0). Px is called the inclusion
capacity (functional) of X. As for Tx, the semi-continuity of the inclusion capacity Px allows extending it to B(U)

and P(U) by setting:
VB € BWU), Py(B)=Sup{Px(K), Kek, KC B}

VAePWU), Px(A)=Inf{P;(0), O€7, AcCO}
so that the following equality holds:

VAEPMU), Ty(A)+ Ps(A%) =1

In general, we have:
Prob(X C K) < Prob(X N K # §) + Prob(X = 0)

(4)
ie:  Px(K)<Tx(K)+ Prob(X =0)

However, if X is a.s. non-empty, the inequality Px < T’x holds and it is clear that a.s. non-empty RACS play a
special role here. This is emphasized by the fact that the compactness of & makes K \ {0} itself compact, and hence

{0} is an isolated point in K = F.

Finally, a few words about the metric nature of K \ {#} are in order. Let d denote any metric compatible with 7.
Since 7' = F\ {0} = K’ = K \ {0} is compact and 2nd countable, it is also metrizable. In fact, it is easy to directly

construct a metric on K’ from the distance d on U, hence verifying directly that X’ is metrizable:

V(K1,K2) €X' x K, p(K1, K2) = Max{ Sup d(z, K1), Supd(y,K>)} (5)
ze K3 yEK;




pis called the Hausdorff metric and it can be verified that the topology defined by p on K’ is equivalent to the relative
Hit or Miss topology on K’. This is indeed a very confortable situation and is an additional reason why we shall focus

our attention on the space K \ {0} when ¥/ is compact.

Random Closed Sets in discrete finite spaces

Discrete finite spaces are compact second countable Hausdorff topological spaces; hence all the results of the
previous section hold in finite spaces. The discrete topology makes all subsets open, closed and compact so that
K = F = O = P(U) and RACS can be simply called “Random Sets”. The particularity of RACS in finite spaces is

that their functionals (Tx, Px or RX) can be written as finite sums of the 2/%! “basic probabilities” Prob(X = A):

%(K)= > Prob(X=A4)= ) Prob(X=4)

ACU
A hits K AnK#G

VK CU, ﬁ x(K) =) Prob(X = 4) (6)
ACK

Rx(K)= ) Prob(X = A)

\ KCA

2.5 Operations on RACS
Set union

It turns out that union is well suited to the RACS formalism, which comes from the fact that F (U) is stable for U
(any finite union of closed sets is closed) and that it is a continuous operator in F(U) equipped with the Hit or Miss
topology 7" of section 2.3. Like any other semi-continuous mappings, it is therefore measurable for the Borel o-algebra
¥ ([7] p.82; [4] p.28), and the union X; U X3 of two RACS is still a measurable mapping valued in (F(U),%’), hence

a RACS of (F(U), ). If X1 and X3 are two RACS of U , we can write:
VK €K, Tx,ux,(K)=Prob(X;U Xy hits K) = Prob(X; hits K or X hits K)

= Tx, (K) + Tx,(K) — Prob(X; hits K and X hits K)
and if X; and Xy are statistically independent :

= Tx, (K) + T, (K) — T, (K) - T, (K)

Px,ux,(K) = Prob(X; UX; C K) =Prob(X; C K and X; C K)
and if X; and X, are statistically independent :

= Px,(K) - Px,(K)
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Since Tx,ux,(K) > Tx,(K) and Tx,ux.(K) > Tx,(K), we can write Tx,ux, > Max(Tx,; Tx,). Furthermore, for
all K € K:

Prob(Xp hits K or X, hits K) = Prob(X, hits K) + Prob(X; hits K) — Prob(Kj hits K and K hits K)

< Prob(Xj hits K) + Prob(X; hits K)
so that we obtain the following bounds:
Max(Tx,; Tx,) < Tx,ux, < Min(1;Tx, + Tx,)
(8)
Max(0; Px, + Px, — 1) < Px,ux, < Min(Px,; Px,)

If X; and X5 are independent then (8) are obviously verified. Now, consider the following extreme cases of dependence:

a) VK € K, Prob(X; hits K | Xy hits K) = 1] gives Tx,ux, = Tx, = Max(Tx,; Tx,)-

B) [VK € K, Prob(X; misses K | X; hits K) = 1] gives Tx,ux, = Min(1;Tx, + Tx,).

7) [VK € K, Prob(X; C K | Xy C K) =1] gives Px,ux, = Px, = Min(Px,; Px,).

§) VK € K, Prob(X, C K | X; ¢ K)=1] gives Px,ux, = Px, + Px, — 1 = Max(0; Px, + Px, — 1).

If X; and X, are‘two RACS with respective hitting functionals T, and T, and respective inclusion functionals Py,
and Px,, neither Max(Tx,; Tx,), Min(1;Tx, + Tx,), Min(Px,; Px,) nor Max(0; Px, + Px, — 1) define the hitting
or inclusion functional of a RACS in general (these functionals are not Choquet capacities) unless the statistical
dependence between X; and X3 is of one of the 4 types above.

However, even if the statistical dependence between X; and X, does not correspond to any of the extreme cases
above, it is still possible for the capacity functionals of the combined RACS X, U X, to attain one bound of (8) on
the set S(U) of the singletons of U (S(U) C K(U) since U is Hausdorff). In fact, one can easily construct two RACS
X1 and X, such that Tx,ux, (resp. Px,ux,) Is constrained on S(U) to verify any relation within the two boundaries
of (8). This is clear from condition (iv') of the Choquet theorem: for any given set of values {Tx,ux,({k})} -y

(resp. {leuxﬂ({k})}keu) verifying (8), it is always possible to choose the values of Tx,ux, (resp. Px,ux,) on the

non-singleton compact subsets of & (including all non-singleton finite subsets) so that the Choquet theorem is verified.
Finally, note that the union of two a.s. non-empty RACS is still a.s. non-empty.

Set intersection

Like union, intersection has good properties that make it well suited to the RACS theory: F(U) is stable for N and

in F(U) equipped with the Hit or Miss topology 7/, N is upper semi-continuous (but not continuous, see [7} p.77, [4]
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p.7), hence measurable for the Borel o-algebra X/, so that the intersection X1 N X5 of two RACS is still a RACS of
(F(U),T'). Unfortunately, there is no simple way of writing the hitting and including functionals of X; M X3 in terms
of those of X; and X», as is the case with union, even if X; and X, are assumed statistically independent. In general,

we only have the following inequalities:

0<Tx;nx, < Min(Txl;TXQ) ‘
(9)

Max(Px,; Px,) < Px,nx, <1

With the implying functional Rx,nx, however, we get the following stronger inequalities:

Max(0; Rx, + Rx, — 1) £ Rx;nx, < Min(Rx,; Rx,) (10)
And when K = {k} is a singleton, T ({k}) = Rx({k}) and we can write:

Max(0; Tx, ({£}) + Tx,({k}) — 1) < Txynx, ({k}) < Min(Tx, ({k}); Tx, ({k})) (11)

which is obviously verified when X; and X are statistically independent. Furthermore, one can always construct two
RACS X; and X3 such that Tx,nx, is constrained on S(U) to verify any relation within the two boundaries of (10)

(including the boundaries themselves).

In a finite space U (equipped with the discrete topology), we can write:

Tx,nxa(K) = ) <

A hits K

VK e K\{0},  Prinx(K)= ), (

ACK “BnC=A

Rxnx.(K) = ( > Prob(X;=B; X2 = C’))

KCA *BnC=A

> Prob(X;=B; X = C))

BnC=A

Z Prob(Xl =B; Xa= C’)) (12)

Of course, there is no reason why X; N X, should be a.s. non-empty (or even non a.s. empty) even if X; and X»

are both a.s. non-empty.

Probabilistic combinations

A common property of all combinations based on set-theoretic operators is that they are well suited to the
management of imprecision since imprecision is a set-theoretic concept.

However, by construction, these combinations cannot deal with problems of uncertainty. This is clear when we
notice that they are fatal in the sense that any piece of evidence will irremediably alter the Representation of the

World: no matter what evidence and how much information is subsequently provided, the Representation will never
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go back to its previous state. If the all the evidence is somewhat uncertain, this over-optimistic way of accumulating
it will generally fail. If we want to deal with uncertain data, we must select a probabilistic combination operator, since

uncertainty is a probabilistic concept.

The simplest probabilistic operation one can think of is the mean operation. If X,...,X, are n statistically
independent RACS and (ay,...,a,) € ()" \ {(0,...,0)} are n real positive numbers at least one of which is
non-zero, the functional 7" defined on K by:

>ty @i - Tx,(K)
Z?=1 @;

VK ek, T(K)= (13)

obviously verifies the conditions of the Choquet theorem, and hence defines a RACS of U, called mean RACS of
X1,...,Xn with weights a4, ..., a,. The corresponding inclusion capacity functional is:

?:1 Qi - PX-(I{)

2
VK €K, P(K)= ¢
Zi:l @

(13')

This is truly a probabilistic accumulation since we do not attempt to combine the realization sets themselves (using
set-theoretic operators), but merely take the union of the realization spaces of the random variable. A direct
consequence is that combination is not fatal in the sense that £he relative weight of any piece of evidence will decrease
as more and more information is gathered, and eventually become negligible if the amount of received information is

large enough.
3. Mathematical connections with other theories

3.1 upper and lower probabilities

3.1.1 induced by a multi-valued mapping

This approach dates back to [11] and originated from the idea that a multivalued mapping from a space X to a
space S carries a probability measure defined over the subsets of X into a system of upper and lower probabilities over

subsets of S ([11]). See [5] for a more recent formulation of the same idea.

Let (22, Xq, Prob) be a probability space and (U, £y) a measurable space. Let I’ : Q — P(U) be a “multivalued
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mapping” over U , i.e. a mapping taking values in P(U ). Consider the two following “inverses” of I':

lower inverse Iy : P(U) — P(R)

Ar— T (A) = {weq; T(w) C A}
(14)
upper inverse " : P(U) — P(Q)
A T*(4) = {w € ; T'(w) hits A}
(obviously Tw(U) = Q, T*(8) = @ and T,(A°%) = (T*(4))°). We say that T is strongly measurable with respect to Xg

and Dy whenever the lower and upper-inverses of any event of Xy are events of Bn. Given a strongly measurable

(multivalued) mapping T, define the lower-probability P, and the upper-probability P* induced by T, by:
VA€ Xy, P.(A) = Prob(I.(4)) noted Prob(I'C 4)
(15)
P*(A) = Prob(I*(4))  noted Prob(I hits A)
Note that neither P, nor P* are measures in general (they are not necessarily additive) but they are capacities. We
obviously have: P,({{) =1, P*(0) = 0 and P.(4°) =1 - P*(4),VA € Zu.

The relationship with the RACS theory is clear: in the latter, we explicitly construct a o-algebra on F(U) C P(U)
by topologizing this space with the Hit or Miss topology induced by a topology on & . Then we can legitimately speak
of the measurability of a mapping I’ : € — F(U) without recourse to the somewhat artificial concept of “strong
measurability”. Although the above approach is more general (no topology is assumed on U ), we argued (2.2) that
there is no practical use for such abstract theories and that assuming a topological structure on U and restricting
our study to the mappings valued in F(U) are the minimum concessions that physicists are entitled to ask from
mathematicians... As soon as a topology on U is assumed (Zy being its Borel o-algebra ) and T takes its values in

F(U), both approaches are strictly equivalent, i.e. T is strongly measurable w.r.t. Xg and Xy iff it is measurable
w.r.t. Bg and &' = Zrq.
Given a system of lower and upper probabilities P, and P* induced by a strongly measurable (multivalued) mapping

T such that the event T'.(#) = I'*(i) has zero probability measure, consider the set C of all (genuine, i.e. o-additive)

probability measures P that can be defined on the measurable space (U,%y) and which verify:
VA € Xy, P.(A)<P(A)LP*(4)

Cis clearly a convez closed set of probability measures ([5], [12]). For a given event A € Yu, consider the probability
measures P and P defined respectively by P(A) = P.(4), P(A°) =1 — P.(A) and P(A) = P*(4), P(4°) =
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1— P*(A). We have: _
P.(4) = P(4) < P*(4)

P.(A%) < P(A4°) = P*(A%)
P,(4) < P(A4) = P*(4)

P.(4%) = P(A%) < P*(A°)

and therefore P € C and P € C, and obviously P(A) = Inf(P(A)) and P(4) = Sup(P(A)) so that we can conclude:
VA € ¥y, P.(A) = })rexg P(A)

P*(A) = Sup P(4)
PeC

3.1.2 induced by a convex subset of probability measures

Conversely, consider a class C of (regular o-additive) probability measures over a measurable space (U, ) and define:

lower probability : VAeXy, P.(A)= IIJIelg P(A)

| (16)
upper probability : VA€eXy, P*(A)=SupP(4)
PecC

(we obviously have P.(U) = P*(U) = 1, P.(8) = P*(0) = 0 and P,(A°) =1 — P*(A), VA € Zy). Since the same
lower and upper probabilities are yielded by the convex closure of C as by C itself, we may as well restrict C to be a
convex closed subset of measures. These sets are called belief siructures in [13] and are thought of as the sets of the
possible bets of a rational gambler.

The main point here is that there does not necessarily exist a multivalued mapping T that “fits” a given class C
according to equations (15). In order to guaranty this existence and hence the equivalence of the two definitions (15)
and (16), class C must verify the additional following constraint (a proof in general compact metrizable spaces is given

in the appendix, Proposition 2):

n
VnZ 1, V(AI)“')An) € (Eu)n) VP€C1 P(U Az) 2 Z ( |I|+l },Ielg ﬂA )) (17)
i=1 I1c{1,...,n} iel

or equivalently:

Vo>1, Y(41,...,4,) €(Zw)", VPecC, P((J4)< Y. (=D sup(P(| ] 4)) (17')
i= Ic{i,...,n} Pe iel

Now, given any convex closed set C of probability measures on ¥y, it is of interest to determine a RACS X such that:

VAETy,VPeC, Px(A)< P(A)<Tx(A)
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The “smallest” such RACS (i.e. the RACS X with the largest Px and the smallest Tx) is obviously given by the
closure C' of C w.r.t. inequalities (17), i.e. the smallest set C’ that includes the convex closed set C and that verifies
inequalities (17). Indeed, the closure w.r.t. (17) of a closed convex subset of probability measures remains a closed

convex subset of probability measures. Then we have, by construction (P, and P* being defined as in (16)):
0<Px <P <P <Tx<L1 (18)
but the inequality 0 < P.(4) < P(A) < P*(A) < 1 does not hold in ¢’ (for all A € Zy) in general.

3.2 Dempster-Shafer (DS) Theory of Evidence

Let U denote the finite Universe (called Frame of Discernment) and 2 = P(U) the power set of & which is also

finite (|2%4] = 2¥1).

3.2.1 Belief/Plausibility functions

A Belief function is a function from 2% into the unit real interval [0; 1] that verifies:

(i) Bel(0)=0

(i) Bel(U)=1 (19)

(i) Bel( U A) > Z (—1)|Il+lBel(n A;) for every finite family A4;,..., Ax
}

i=1,..,n IC{Lyein iel

I#¢

A direct consequence of these conditions is: YA C U, Bel(A) + Bel(A°) < 1. Plausibility functions, noted Pls,
are defined by: Pls(A) = 1 — Bel(A%), VA CU. Belief and Plausibility functions play a dual role in the theory and

it is clear that a function Pls: 2¥ — [0;1] is a Plausibility function iff it verifies:
(i) Pls(®)=0
i) Pls(U)=1
(i) Pisu) 0

(i1) Pls( ﬂ 4;) < Z (—1)|I|+1P13(U A;) for every finite family A,,..., A,
}

i=1,...,n IC{1,.ccin icl

I#9

Note that conditions (19-iii) and (20-iii) are both loosened versions of the classical Poincaré formulas that hold for

any measure f on :

p( |J 4)= Y (D) 4)  Vn>0andV4,..., A, €X (21)
i=1,...,n IC{;;’;J’”) iel
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p( [} 4)= > () J4)  Vn>0andVA,..., 4. €X (21)

i=1,..,n IC(II;'&""} iel

The Belief interval associated with a subset A of U is simply:
[Bel(A); Pls(A)] = [Bel(A);1 — Bel(A®)] = [1 — Pls(A); Pls(A)] C [0;1]

The Belief interval associated with A summarizes the information about A and its complement in U ; its length
Pls(A) — Bel(A) represents the amount of belief that is neither commited to A nor to its complement, i.e. the amount

of ignorance about A and its complement. A Mass function is a function from 24 into [0, 1] that verifies:

() m@) =0

22
() > mA)=1 (22)
Acu
Given a Mass function m over i , a Communality function can be defined by setting ¢(4) = 3= 4. p m(B).
Mass functions are related to Belief, Plausibility and Communality functions by the following equations:
VAe M, Bel(A)= Y m(B) m(4) = Y (-1)4-BlIBel(B)
, BCa BCA
Pls(A)=1— 5 m(B)= Y. m(B) m(4) = ¥ (-1)IANBI+1 pis(B) (23)
BCA® BnA#? BDA®
¢(4)= 3. m(B) m(4) = 3 (-1)IP=4lg(B)
ACB : ACB

Hence, the 4 fundamental concepts of the theory (Mass, Belief, Plausibility and Communality functions) are all
“gquivalent” in the sense that any of them is sufficient to define the other three.

The subsets A C U such that m(A) > 0 are called the focal elements of m. The focal elements of a Belief function
Bel (or a Plausibility function Pls) are simply the focal elements of the associated Mass function m. We say that
a Belief function (or equivalently a Plausibility function) is consonant whenever its focal elements are nested, i.e.
they can be totally ordered (by C). A Bayesian Belief function is a Belief function whose only focal elements are

singletons of U . Refer to [14] for an application of the DS theory to a concrete Al problem.

In order to compare the DS representation with Belief/Plausibility functions and the RACS theory, we have no
alternative but to consider spaces where both are well defined, i.e. where the axioms of both are satisfied: discrete
finite spaces are the only such sets, as they are the only finite topological spaces that are Hausdorff, compact and

second countable (figure 1).

In the appendix (Proposition 1), we prove the following equivalence:

Let f be a function defined on the power set P(U) of a set U .
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Then f verifies:

V>0, V(4o, A1, .-, 4a) € P, f(A) < D (=) f4 u ] 4) (24)
IC{1,...,n} icl
I#9

iff f is increasing and verifies:

V>0, V(4f,..., A) e P, F( () A< Y (=niHr4h (25)
i=l,..,n 1C{1,...,n} iel
I#9

Let U be a finite set, equipped with the discrete topology. Using the above equivalence, it is not difficult to show that:

The Plausibility functions Pls on U are exactly the alternating Choquet capacities of infinite order

satisfying Pls(@) = 0 and Pls(U) = 1.

(the semi-continuity condition is trivially verified since every function defined on a discrete space is continuous)
And since a functional T' defined on K(U) = P(U) entirely determines a RACS on U iff it is an alternating capacity

of infinite order verifying T'(0) = 0 and T' < 1 (CHOQUET theorem), we conclude:

The Plausibility functions Pls defined on a (finite) Frame of Discernment U are exactly
the hitting capacities T of the almost surely non-empty Random (Closed) Sets X

of the discrete topological space U .
By changing f into 1 — f¢, we get the dual proposition:
The Belief functions Bel on U are exactly the monotone Choquet capacities of infinite order
satisfying Bel(0) = 0 and Bel(l) = 1.
and consequently:
The Belief functions Bel defined on (finite) Frame of Discernment U are exactly

the inclusion capacities Px of the almost surely non-empty Random (Closed) Sets X

of the discrete topological space U .

The Communality functions ¢ are obviously the implying functionals Rx of RACS X, as can be seen by comparing
equations (6) and (23). As for Mass functions m, they are equivalent to RACS probability densities f = ‘%I where v

is the counting measure in the (finite) space P(U):

VA ePU), m(A)=Prob(X = A4) : (26)
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In light of this equivalence, the link between the DS and the upper/lower probability formalisms (3.1) is clear:
a RACS of U being a (Zq, Ty)-strongly measurable multivalued mapping, definitions (14) and (15) are valid and
we have: Px = P, = Bel and Tx = P* = Pls. These functionals can be equally viewed as the lower and upper
probabilities induced by the convex closed set of measures C = {P probability measure on Xy; YA € Xy, Bel(4) <

P(A) < Pls(A)} since C obviously verifies (17).

3.2.2 Dempster’s rule

Hence, the Dempster-Shafer formalism deals exclusively with a.s. non-empty RACS. The problem with RACS
intersection is that F(U) \ {0} is not stable for M, so that the intersection of two a.s. non-empty RACS need not be
a.s. non-empty. This is most unfortunate as empty sets do not “carry” any information (at least in the original DS
framework). Thus, we must find a way to obtain an a.s. non-empty RACS by combining two a.s. non-empty RACS
X and X, using intersection. The answer is simple: if the event X; N X5 # @ (this is indeed an event of &’) has a
non-zero probability, we can consider the conditional RACS X1 N Xy given this event, and this will be a.s. non-empty
by construction. However,if Prob(X; N X; = @) = 1, then it is not possible to combine the two RACS using N in
such a way that the result is an a.s. non-empty RACS. In this latter case, we simply state that “the two pieces of
evidence represented by RACS X and X3 are flatly (or totally) conflicting” and do not attempt to combine them.

Suppose that this is not the case however. A simple calculation gives, for any non-empty (compact) subset K:

TX1nX2(‘K)
=T
Prob(X; N X3 # 0) X1nXal Xy X528 (K)

TX;@XQ(K) = PI‘Ob(X]_ NXs hits K | XinX, # @) = (27)

The amount & = Prob(X; N X, = 0) is called the amount of conflict between the two RACS X; and X,: it is simply
the probability that the two RACS may be disjoint and is thought of as a measure of the “conflict” between the two
pieces of evidence represented by Xy and X5.

In the finite case, we can write, for all K € K\ {0}:

> Prob(X;NX; = A) ) < 5. Prob(X;=B; Xy = C)>
TX x (I{) = A hits K — A hits K \ BnC=4A

164 Prob(X; N X; # 0) S° Prob(X; = 4; X, = B)
ANB#)

> < 3> Prob(X;=B; Xy = C))
A hits K \ BnC=A

1— 3 Prob(X;=A4; X2=B)
ANnB=8

(28)

In the particular case when X; and X, are assumed statistically independent, we may write:

> ( T Prob(X; = B) - Prob(X, = C))

VE -\ A hit BnC=A
Ker\{0},  Txiex:(K) 1— 5. Prob(X; = A) Prob(X; = B)
ANB=)

(29)
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This operator @ is known as Dempster’s rule of combination ([1]). Remembering the equivalence relations

between the RACS and the DS formalisms (3.2.1), we can write:

5 m) m)

BnNC=A

1- Z ml(A) . mz(_B)
AnB=8%

VK € K\ {0}, Pls; @ Plsy(K) = (30)

where my (resp. ms) is the Mass function of Pls; (resp. Plss). It is clear that Dempster’s rule is both commutative
and associative, allowing us to define such quantities as: m; @ ma @ --- ® my, which is independent of the order of

combination:

[ D ml@=0

i=1,...,n
EB m; A=A ;..nA ) e mnlda)
=l [1.:16?’" m;}(4) = - - ZA - m1(AL) - - mn(An) VA#D

Implying functionals (or their DS counterpart, Communality functions) allow a very concise definition of Dempster’s

rule:

Rix,nxa(K Rx,(K) - Rx,(K
Rx,ex,(K) =Prob(K C XiN Xz | X1 N X2 #0) = Prob&:’; (Xz)# 5= Prf)‘;)((x)l = )’(‘:; %)

the rightmost equality being verified if X; and X» are independent.

3.3 Possibility theory

3.3.1 Zadeh’s Possibility/Necessity measures

Zadeh ([15]) defined a possibility measure on U as a set-functional II valued in [0;1] and verifying:
(1) m@=o
(i) MU)=1 (31)
(iii) V(4,B) € PU)?, (AU B)=Max(I(4),1i(B))
A possibility measure II has the property that it is entirely determined by its possibility distribution ¢ : U — [0;1]
defined by ¢(z) = I({z}). Indeed, we have: VA C U, TI(A) = Sup{¢(z); = € A}. Note however that there may
exist other functions ¢’ : U — [0;1] such that VA C U, II(A) = Sup{¢'(z); =z € A}.
Conversely, starting from a function ¢ : U — [0;1], it defines a possibility measure by VA C U, II(4) =

Sup{é(z); © € A} iff ¢ is normalized, i.e. there exists some 2o € U such that ¢(zo) = 1.

Ifis a possiBility measure, it is customary to call the functional R : R(A) =1 - II(A®) a necessity measure.
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Necessity measures can be axiomatically defined by:

() R(®)=0
Gi) XU)=1 (32)

(i) V(4,B)ePU)?, R(An B)=Min(R(4),R(B))

If U is finite, it is clear that consonant Plausibility (resp. Belief) functions are possibility (resp. necessity) measures.
It can be shown directly (appendix, Proposition 3) that every possibility (resp. necessity) measure, as defined by
(31) (resp. (32)), verifies (20) (resp. (19)) and hence is a Plausibility (resp. Belief) function (in spite of what [16]
suggests).

To extend the argument to infinite spaces, we must assume a topological structure on f and for the reasons given
in 2.3, we assume that U is locally compact 2nd countable Hausdorff. This topological setting would be quite useless
if we do not impose any (semi) continuity requirement on the possibility (and necessity) measures that can be defined

on the Borel g-algebra 3. This is done by streﬁgthening conditions (31-iii) and (32-iii) into:
(31 —iii) II(U A;) = SupII(4;) for any countable family of events 4; € Xy
iel

iel
(32 —iii) N(ﬂ A) = glIfN(A,) for any countable family of events A; € Ty
i€l

Indeed, this implies that II(O,) 1 II(O) whenever O, 1 O, i.e. Il is 1.s.c. on O (since it is increasing), or equivalently
u.s.c. on K. Similarly, X is such that R(K,) | R(X) whenever K, | K and hence is u.s.c. on K (since it is increasing).
Furthermore, among the functions ¢ such that VA C U, TI(A) = Sup{¢(z); = € A} and R(4) = Inf{1l — ¢(z); z €
A°}, the one defined by ¢(z) = II({z}) is particularized as being the only one which is u.s.c. (1 - ¢ being l.s.c.).

If U is compact, it is clear that every possibility measure II (resp. necessity measure R) defines an a.s. non-empty
RACS X by Tx = Il on K (resp. Px = R on K). This can be verified directly with the Choquet theorem, but it is also
a consequence of a more general relationship between the RACS theory and Fuzzy sets (Il and R define the canonical
RACS «(S) associated with the fuzzy set S represented by the membership function ¢, and since ¢ is normalized,

£(S) is a.s. non-empty; see 3.4.1).

3.3.2 Giles’ generalized theory

Giles ([13]) proposed a generalization of the concept of Possibility /Necessity, interpreted in the context of betting

behaviour by a rational gambler. His theory can be axiomatically defined by the single property (adapted from {13]):
Yn>1, Vre{o,...,n}, VY(4i,...,4,)€PU)",

U (OA,-)::U = Vse{0,...,n—r}, Z O(A;) >r+s-TI( U (ﬂA')) (33)

rc{1,....n} {el i=1,....n IC{1,...,n} .§€l
[I=r [Il=r+2
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which, as a consequence, yields a relaxed version of (31-iii):
VA, B, ANB=0= Max(II(4),II(B)) < I(AU B) < II(4) + II(B) (34)

where the condition AN B = § turns out to be unnecessary. Zadeh’s original concept, as well as “classical” (additive)
probability measures, are viewed as the two limiting cases of this inequality (34).

But Giles ([13], p.189) then showed that any possibility measure defined by (33) can be written as: II(A4) =
Suppec(P(A)) for a closed convex set C of probability measures P defined on a o-algebra of U, and conversely,
that for any closed convex subset of probability measures (called Belief Structure), the functional defined by
I(A) = Suppec(P(A)) is a (generalized) possibility measure. Hence, it turns out that the generalized possibility
theory of [13] is ezactly the theory of upper-probabilities of paragraph 2.1.2, the dual necessity measures corresponding
to lower-probabilities.

Inequality (18) can be written:
0<Px <R<SII<Tx <1
(35)
or equivalently, in DS notations : 0<Bel<RKIOLKPIs<1

(Dubois and Prade obtained the same inequality in a constructive manner by approximating Belief and Plausibility

functions by means of Possibility and Necessity measures, see [17]).

3.4 Fuzzy set theory

3.4.1 membership functions

Consider the restriction of the hitting functional Tx of a RACS X of U to the set S(U) of the singletons of U .
The relation Tx ({k}) = Prob({k} hits X) = Prob(k € X) suggests some similarity with the membership relation
s(z) of Fuzzy Set theory (S being a “fuzzy subset” of & ). Indeed, this analogy has been studied in the more
general context of Random Sets ([18],[19]). Goodman [18] has established that at least from a formal viewpoint, there
exist systematic connections between fuzzy set theory and its operations, and probability theory and corresponding
operations, via the concept of random sets. Not only has it been established that fuzzy sets are nothing but one-point
coverages of random sets, but all the classical “fuzzy operators” as well as their extensions, have a set-theoretic

counterpart in the random set theory.
What about Random Closed sets (RACS)? It turns out that they correspond to upper semi-continuous fuzzy sets,

i.e. fuzzy sets whose membership function is upper semi-continuous (u.s.c.) from f to [0;1]. Let us investigate this

connection in more details.



Let p5 be the membership function of a fuzzy subset S of a locally compact metrizable space & . The set p3*([€;1])

is called the (closed) cross section of S at level ¢ and the mapping
vs: [0;1] — PU)
(36)
§v— vs(€) = u5' ([6;1])

is called the (closed) cross section function of S. It is well known ([6], pp.360-361) that ps is upper semi-continuous
iff all the cross sections vg(€) are closed subsets of U , i.e. iff vg takes its values in F(U) (instead of simply P(U), see
figure 3).

Consider the relative topology of ® in [0; 1] and the Hit or Miss topology on F(U). Let us show that if pg is u.s.c.
then the cross section function of S is continuous for these topologies. Since the Hit or Miss topology is generated by
the basic opens O'% = {F ¢ F(U); F misses K} for K compact in U , and O'¢p = {F € F(U); F hits O} for O open

in U, it suffices to show that the inverse images by vs of these basic open sets are open for the relative topology in

[0;1].
vs (0'%) = {€ €[0;1]; p5i([61]) € 0%} vs1(0'0) = {€€(0;1]; u3'([6;1]) € 0’0}
= {€ € [0;1]; #5"([€;1]) misses K} = {¢ € [0;1]; 3 ([¢;1]) hits O}
= {£ €[0;1]; £ > Sup us(z)} = {¢£ €[0;1]; € < Sup ps(z)}
zeK €0
=] Sup ps(z); 1] = [0; Sup ps(z)]
seK z€0

and hence vg is continuous. Now, let € be a random variable valued in [0;1], i.e. a measurable mapping from the
probability space (2, Xgq, Prob) to the measurable space ([0;1], B), where B is the Borel o-algebra of [0;1]. Since vg
is continuous for our topologies, it is measurable for the Borel o-algebras B and ¥/. The composition X = vsof is
a measurable function defined on (£2,Zq, Prob) and taking values in (F(U),Z’) and is therefore a RACS. Its hitting

capacity functional Ty is:

VK € K, Tx(K)=Prob(X !(F'k)) = Prob([us o &]7'({F; F hits K}))

= Prob(¢~}(v5 ({F; F hits K}))) = Prob(¢~([0; Sup us(z)])
T€EK (37)
= Prob(¢ < Sup s(x))
z€K

in particular, for K = {k} : Tx({k}) = Prob(¢ < ps(k))
If the random variable ¢ is uniformly distributed over [0;1], we have Prob(§ < a) = «, which gives Tx(K) =

Supyx #s(k) and in particular T'x ({k}) = ps(k). We call this RACS X = vg o the canonical RACS associated

with the u.s.c. fuzzy set S and we write X = «(S). X is a.s. non-empty (Tx (/) = 1) iff us is normalized in the sense

of 3.3.1 (u5'({1}) # 9).




Conversely, let X be a RACS of & . The Choquet theorem insures that the capacity functional Tx of X is us.c.
on K(U) equipped with the Hit or Miss topology. Obviously, Tx is also u.s.c. on the set S(U) of all singletons of
U, equipped with the induced Hit or Miss topology (remember that S(U) C K(U)). But the canonical imbedding
t: U — S(U) defined by «(z) = {z} is a bicontinuous bijection (i.e. a homeomorphism). This can be checked
quickly by noting that :=1(0’0) = ~1({{z} € S(); {z} hits 0}) =+~ ({{z}; ¢ € O}) = O and similarly that
L'l(O’K) = K¢°. Therefore, ps = Tx ot is u.s.c. for the topologies of & and [0;1] and defines an u.s.c. fuzzy set S '

noted S = ¢(X). S is normalized iff X is a.s. non-empty.

We may sum up the above considerations by saying that every RACS defines a (unique) u.s.c. fuzzy set which is
its point interpretation (called “point coverage” in [18]), and for every u.s.c. fuzzy set, there exists a (not necessarily
unique) RACS of which it is a point interpretation. One such RACS, called canonical, is constructed by uniformly

randomizing the cross sections of the fuzzy set membership function.

3.4.2 T-norms/conorms and Fuzzy connectives

Fuzzy connectives are binary operators used for combining two fuzzy sets defined over the same Universe U .
Triangular norms and conorms (resp. T-norms and T-conorms) are binary operators that verify the basic axioms of
commutativity, associativity and monotonicity as well as specific boundary conditions. It has been argued that the
Fuzzy connectives intersection and union should obey this axiomatics if they are to be compatible with the intuitive
concepts of conjunction and disjunciion'.

It is well known that the Min operator is the greatest T-norm A whereas Max is the smallest T-conorm V:

Y(a, b) € [0;1]%, A(a;b) < Min(a;b)
Max(a;b) < V(a;b)

Several families of T-norms and conorms have been suggested, including: A(a,b) = Min (1;(ap + bp)l/") and the
corresponding conorm: V(a,b) = Max (0;1 — ((1 — a)? + (1 — b)?)!/P) (where p € [1;-+00] is a parameter). For this

family of T-norms/conorms, we obviously have:
Max(0;a + b —~ 1) < A(a;b) < Min(a; b)
V(a,b) € [0;1]?, (38)
Mazx(a;b) < V(a;b) < Min(1;a +b)
which reminds us of:
Max(0; Tx, ({z}) + Tx,({z}) = 1) £ Tx,nx,({z}) £ Min(Tx, ({=}); Tx,({=}) (11)

Max(Txl;Txn) < TX1UX2 < Min(l;Txl + TXZ) (8)
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THEOREM 1. For any T-norm A verifying (38) and any pair (S1,S2) of semi-continuous fuzzy subsets of U , there
exists a pair (X1,X2) of RACS such that S1 (resp. S3) is a point interpretation of X, (resp. X2) and S1 A Sy is a

point interpretation of X1 N Xa: S = o(X1), Sz = ¢(X2) and S1 A Sz = p(X; N Xy).

This follows from the remarks of paragraph 2.5, and is a consequence of the Choquet theorem. A slightly stronger

formulation is:

THEOREM 1. For any T-norm A verifying (38) and any pair (S1,S2) of semi-continuous fuzzy subsets of U , there
exists @ RACS Xo such that Sa is a point inlerpretation of Xo and Sy A Sy is a point interpretation of k(S1) N Xa:

Sy = o(X2) and Sy A S2 = ¢(k(S1) N X3).

Conversely:

THEOREM 2. The binary operator A defined on the set of (semi-continuous) fuzzy subsets of U by: S; A Sy =
©(&(S1) N k(S2)) is commutative, associative and verifies the boundary conditions of a T-norm, but is not necessarily
monotonic. Several operators can be oblained, some of which are T-norms, depending on the choice of the statistical

dependence between the 2 RACS k(S1) and £(S2).

Commutativity and associativity of A result from that of N (as a RACS operator) which themselves result from
that of N (as a set-theoretic operator). 0A 0 = 0 and 1 A ¢ = « result from (38). To show that A is not
necessarily monotonic, consider two fuzzy sets S; and S, such that 0 < ps,(2) < ps,(y) and ps,(z) < ps,(y) at
some points z,y € Y and such that Prob(y € &(S2) | y € £(S1)) = 0 and Prob(z € k(S2) | = € £(S1)) > 0. Then
obviously: ps,(y) A us,(y) = Tasy)nm(s,)({y}) = Prob(y € x(S1)) - Prob(y € x(52) | y € £(51)) = 0 < Prob(z €
k(51)) - Prob(z € (S2) | & € (S1)) = Trsi)nn(ss)({2}) = ps, (z) A ps,(2) which violates monotonicity.

Now if k(S1) and k(Ss) are taken statistically independent, ps, (z) A ps,(2) = Tesyne(sa)({2}) = Tesy({=z}) -

Te(ss)({z}) = ps,(2) - us,(x) and A reduces to a simple product, which is a T-norm verifying (38).
The corresponding results for T-conorms are obtained by changing A into V and N into U.
3.5 summary of the mathematical connections

The connections between the various formalisms presented in this section, when i is a compact metrizable topological

space, are summarized in figures 4 and 5.



4. Discussion: what is the point of comparing two theories?

The purpose of section 3 was to establish the mathematical connections between various theories that have a
similar goal: the representation of imprecise, uncertain or fuzzy knowledge in the context of Artificial Intelligence.
The comparison was based on the axiomatics of the theories, i.e. we considered two theories to be (mathematically)
equivalent whenever their respective sets of axioms can be shown to imply each other. Note that it has long been

argued that axiomatic definitions of physical theories are highly desirable (see [20] for a recent discussion).

Are such comparisons necessary, or even simply useful? After all, some authors have argued that even though
two theories are shown to be mathematically equivalent, they should not be confused as long as their interpretations

differ.
4.1 Of the necessity of theoretical comparisons: axiomatics vs interpretation

From a philosophical point of view, the need for establishing theoretical links between different theories that have
similar goals and contexts is undoubtedly a matter of scientific conscientiousness. Isolating a theory and preventing
external criticistn or comparison with other }scientiﬁc theories does not do any good to its long term reputation,
although it does play a protective role for its growth in the early stages ([21]). The Dempster-Shafer and the Fuzzy set
theories provide excellent illustrations in this respect. Both have been intentionally isolated ever since their creations
(1976 for the former [1], 1965 for the latter) and a few attempts to compare them with other formalisms ([5],[12],{18])

or with each other ([22]) have been largely ignored in spite of their important practical implications.

A strong and recent defense of the DS theory can be found in [16]. The author thwarts any criticism by arguing
that even though two theories can be shown to be mathematically related, they should not be compared on the basis
of their axiomatics since their interpretations may differ: “That both models share the same mathematical properties
is not an argument for them being the same concept. Remember that water flow and electricity can be described

mathematically by the same differential equations - but water is not electricity” (from [16]).

At the risk of being considered retrograde, we strongly question the idea that current computers can do more than
merely process information in compliance with a given mathema}tical framework (be it arithmetics, predicate logics
or whatever). This leaves us with only two alternatives: either we define the “interpretation” of a theory in terms of
another “meta” framework, or we rely on a human “expert” to carry out the final interpretation.

‘If the latter is chosen, how can a computer system distinguish between two mathematically equivalent theories?
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Indeed, water is electricity for a computer as long as both are modelled by the same mathematical entities: one needs
a “meta-knowledge” (such as the common-sense of human beings) to distinguish between them.

If the former definition is selected, the mathematical links between the two “sub-theories” actually make them
interchangeable for the meta-framework. Suppose that a computer is provided with the extra knowledge that water
has mass but electricity does not. It is then able to distinguish between the two concepts but it does not hurt to

assume that water and electricity are identical as long as mass is not involved.

Similarly, we cannot see any reason why a computer could distinguish between the DS formalism and the theory
of a.s. non-empty RACS of a discrete finite space, unless a meta-framework explicitely differentiates the two (by
providing a formal definition of 'belief that has no counterpart in RACS theory, for instance). In spite of what many
authors suggest, Dempster’s rule of combination does NOT provide this meta-framework, as it is a mere conditional

RACS intersection.

The remarkable work of [21] is a successful attempt at recasting the foundations of the Fuzzy set theory by getting
rid of the ontological assumption about the “fuzziness of the world”. Indeed, the claim that “the World is inherently
fuzzy” has served as the main justification of the Fuzzy set theory, and provided a very efficient protection against
external criticism/comparison. [21] provides a solid foundational basis for the comparison of the Fuzzy set formalism

with other scientific theories.

4.2 Of the usefulness of theoretical comparisons

Mere scientific conscienciousness does not make computers more intelligent, nor does it make programing them
easier. This paragraph intends to show how theoretical comparisons can be useful in practice, as they create a basis
for the extension of theories that suffer from limited scopes and they allow for hybrid techniques that exploit the

mathematical links between them.

As a matter of fact, it often happens that a seemingly promising theory, with lots of “new ideas”, fails to fulfill its.
potential due to some limitations in its formulation. These limitations may be fundamental assumptions on which
the whole theory is constructed, but they often are technical requirements added for the sake of simplicity and to
facilitate the emergence of the new concepts in a simplified context.

If some mathematical connections have been established with another formalism, it may be possible to rid the new

theory of its technical limitations by using these links as a basis for a theoretical extension. The example given below
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(5.1) iliustrétes this idea: the original DS theory (as found in [1]) is limited to finite Universes U/ and an extension
to general compact metrizable (topological) spaces is proposed, based on the equivalence of the original formalism
with the theory of a.s. non-empty Random Closed Sets of a discrete finite Universe. This extension allows for finite,
countably infinite as well as uncountably infinite spaces.

The above mentioned equivalence could also be used in another direction to extend the original DS formalism
to general (not necessarily a.s. non-empty) Random Closed sets of a discrete finite Universe. This is equivalent to
dropping conditions (19-i) and (20-ii) in the definition of Belief and Plausibility functions. It turns out that this
extension has already been suggested elsewhere ([23],[24],[16]) without recourse to the RACS theory. Note that [23]
uses the links between DS theory and another mathematical formalism (1st order predicate calculus) to derive the
extension.

Another undesirable limitation of the DS formalism is the requirement that all pieces of evidence be independent
from each other. A consequence of this limitation is the incompatibility of the concept of idempotence: it is not
possible to tell whether Dempster’s rule is idempotent or not since we cannot combine the same information twice.
We believe that idempotence is an important concept in Al and the RACS based extension of Dempster’s rule allows

for the representation of idempotence.

Another useful consequence of theoretical comparisons is the ability of building hybrid technigues that take
advantage of the theoretical connections between several theories so that the tools of one of them can be used in the
other or in conjunction with the tools of the other. This is especially useful when one of the theories is weak at dealing
with some aspects of the problem. For example, it has been generally acknowledged that the absence of a systematic
scheme to construct Belief/Plausibility functions and Fuzzy set melhbership functions from World evidence or expert
information is a weak point of both the DS and the Fuzzy set theories. We argue (par. 5.3) that RACS theory is

well-equipped to deal with such difficulties.
5. Exploiting the mathematical connections

5.1 extension of Dempster-Shafer theory to compact metrizable spaces

The finiteness assumption is definitely a serious limitation of the DS theory; consider the classical stereo-vision
problem, for instance: although all images are digital and represented on a finite grid, the results of applying a

stereo-vision algorithm on a pair of such images are truly 3-dimensional features. If we want to represent this
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information on a finite Frame of Discernment, we must sample this continuous representation space too!

Hence, it appears desirable to eztend the DS formalism in some suitable way, so as to be able to use finite, countably
infinite, as well as uncountably infinite (continuum) Frames. How is this to be done?

A straightforward way would be to transpose directly to the most general space the definitions (19) and (20) for
Belief and Plausibility functions, hence keeping the intuitive interpretation of Belief Intervals in terms of lower and
upper probabilities. As a matter of fact, this approach is indeed possible and the resulting extended DS theory turns
out to be equivalent to the theory of a.s. non-empty Random Sets (not necessarily closed, see [5]).

For the reasons given in paragraph 2.2 however, we do not consider this straightforward extension as the most
suitable for practical and experimental purposes and we argue that it should take place within a topological setting.
We shall thus extend the DS theory to infinite topological spaces on the ground of equivalence (3.2.1) by identifying
it with the theory of a.s. non-empty RACS. As a matter of fact, this identification is entirely straightforward if we
restrict it to compact 2nd countable (Hausdorfl) spaces since we saw that these spaces many desirable properties. In
particular, these properties insure that the inclusion capacity functional Px defined by (3) entirely determines the
RACS X and since we shall identify Px with a Belief function Bel, this property is required.

Concluding the preceding constructive steps, we define the Extended DS theory as the theory of almost surely
non-empty RACS of a compact metrizable Universe. Note that it has been argued that compact spaces are natural
generalizations of finite spaces ([25]), and in view of figure 1, we could even say that compact 2nd countable spaces
are natural extensions of finite discrete spaces so that it appears natural to consider the extension of the DS theory

to such spaces...

The only delicate point in this extension is related to the Mass functions (22): in general, there is no reason why
the probability distribution P’ of a RACS X should have a density id};—l with respect to some measure v on F (U ). If
this happens to be the case, then the Mass function is identified with this density and we may apply general integral

formulas to generalize equations (23).

As for Dempster’s rule &, it can be generalized through equation (27), and thus becomes valid in all cases:
U finite or infinite, countable or uncountable, X; and X, independent or not. This rule is idempotent because RACS
intersection is (which is a consequence of the idempotence of N considered as a set operator). Remember that the
idempotence requirement only constrains the combination of RACS that are identical as mappings (and not only in

probabilily). Thus idempotence cannot be made explicit in (29), or in Shafer’s original work [1], where all pieces of
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evidence are assumed independent.

Although conflict was presented by Shafer as a useful measure of the “disagreement” between several pieces of
evidence, engineers have been increasingly aware of its painful and somewhat cumbersome behaviour. Imagine that
we succeeded in combining 100 complex pieces of evidence in a large Frame U (at a non-negligeable cost!), and that
we are presented with an extra (101st) piece of evidence. What a disappointment if it happens to flatly conflict with
the other 100! What should we do then? Modify the Frame of Discernment U as suggested by Shafer himself? But

then, the whole accumulation process looses its order-independence.

In an attempt to get rid of conflict, one of the authors suggested ([23]) augmenting the Frame of Discernment by
adding to U an extra element V called the hidden element. He used the 1st order predicate calculus to sh‘ow that every
Frame of Discernment is in fact associated with a fundamental essumption, which he made explicit in the Frame’s
Characteristic Formula. Since the negation of this fundamental assumption is a valid (logical) proposition, it must be
incorporated in the Frame itself and the focal elements of any evidence must be of the form {VIUA CU = {V}ulU.
Since such focal elements cannot be disjoint (they intersect at least at {V}), there is no conflict and the normalization

constant in (30) disappears (x = 0).

A very similar result was obtained by Smets [24], who argued that when one constructs a Frame of Discernment U,
one must choose between the Closed World Assumption (CWA) and the Open World Assumption (OWA). The former
explicitly states that I encompasses all the possible evidence (“there is no unknown evidence”), while the latter more
reasonably postulates the existence of a set U* of “unknown evidence”. Of course, nothing is known about this set,
but its very existence (i.e. U* # @) gets rid of the normalization factor in (30). [24] concludes that the DS theory as

given in [1] implicitely makes the Closed World Assumption, hence generating conflict.

These results can also be obtained by topological considerations. We know that a locally compact 2nd countable
Hausdorff space U can always be compactified into a compact metrizable space & by adding a single point at infinity
00. A non-empty RACS X of i is simply a random variable taking values in the compact 2nd countable (Hausdorff)
space F\ {0} = (K@) \ {0}) U {F U{oo}; F € F(U)}. We can identify 3 cases a, #, ¥ for an a.s. non empty RACS

XoflU:

@) Tx({oo}) = 0. X is an a.s. non-empty compact RACS of & . Dempster’s rule is not always possible. We are in

the situation of the Closed World Assumption (CWA).
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B) Tx({oo}) > 0. Such Random Closed Sets are always combinable by Dempster’s rule since they all hit with
non-zero probability at least a common element. In a word, they cannot be “totally conflicting”.

v) Tg({o0}) = 1. X can almost surely be written as X = {o0} UX, where X is a RACS of & . Since this is
a subcase of the previous case, such Random Closed Sets are always combinable by Dempster’s rule. In fact,
their relative conflict is always 0 since they all hit (a.s.) a common element. We are in the situation of the

Open World Assumption (OWA).

Clearly, the “Augmented Frame of Discernment” of [23] is equivalent to the one-point compactification of the Universe
U and we saw that the latter exists iff &is locally compact Hausdorff (and not merely completely regular). Since
this is one of the basic assumptions of the RAéS theory, the approach of [23] is fully justified in our extended DS
formalism based on the RACS theory. In other words, the RACS-based extension of ;nhe DS framework entitles us to

reduce all the “unknown evidence” of U* to a single V element.

Note that as Dempster’s rule is based on a set-theoretic operator (intersection), it may be suitable for problems
involving imprecision only, but not for problems where both imprecision and uncertainty are important factors. For

such problems, a probabilistic operator (2.5) should be used.

5.2 construction of Fuzzy sets from Belief/Plausibility functions and vice versa

Consider general Belief/Plausibility functions Bel and Pls of a compact metrizable topological Universe i/ . Is it

possible to construct a (u.s.c.) Fuzzy set from Bel or Pls? If so, how is this to be done?

Given the interpretation of Belief and Plausibility functions in terms of the including and hitting capacity functionals
of a RACS (3.2.2) and the links between Fuzzy sets and RACS (3.4.2 and figure 5), the answer to both questions is
simple: Pls o defines the membership function of a Fuzzy set and we showed (8.4.1) that it is upper semi-continuous,

hence defining a u.s.c. Fuzzy set of & . The membership value of a point of ¥ is its plausibility (or communality).

Conversely, for a given upper semi-continuous Fuzzy set S with membership function pg,
Pls(A) = Sup ps(z)
€A
VAEU,
Bel(A) = IEnAfc(l — ps(z))
define Plausibility and Belief functions, canonically obtained from S and related to the Hitting and Including capacity

functionals of the canonical RACS «(S) associated with S. It turns out that these functions are also Possibility and

Necessity measures with distribution pg whenever pg is normalized (cf. 3.3.1). Therefore, we can say that normalized
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us.c. Fuzzy sets canonically define Zadeh Possibility/Necessity measures (which are particular Plausibility /Belief
functions), but jt is of course possible to define “non-canonical” Belief and Plausibility functions from a normalized
w.s.c. Fuzzy set, and these will not be Possibility/Necessity measures. One way of doing this is by randomizing the
cross section of g using a non-uniform random variable &: if f is the probability density of £ and F (z) = f; f(y)dy

its cumulative probability distribution, then

Pls(4) = F(Sup ps(z))
VA el, °
' Bel(4) = F( Inf (1 - ps(2)))

are Plausibility and Belief functions which are Possibility and Necessity measures if and only if f is uniform (constant).

5.3 construction of Belief/Plausibility functions from World evidence

One of the weak points of the DS formalism is the absence of any systematic scheme for constructing Be-

lief/Plausibility functions from pieces of evidence. The following theorem particularizes one such construction scheme:

THEOREM 3. The only order-independent, piecewise and poini-compatible combination operator that allows the con-

struction of general Belief/Plausibility functions from (closed) subsets of a Universe is the Mean operator.

A proof is given in the appendix, in the equivalent RACS framework. “order-independent” stands for “commutative
and associative” and by “general Belief/Plausibility functions”, we mean non-trivial (0-1 valued) Belief/Plausibility
functions.

A point-compatible combination is such that the Belief function constructed from subsets of ¢ reduces to an ordinary
point probability measure (Bayesian Belief function) whenever all subsets reduce to singletons. This requirement
guarantees the compatibility with the point approach, or in other words, insures that our construction scheme is an
extension of the point approach. It can also be viewed as an economy principle: if all pieces of evidence are points of
U , there is no need for é set theory and since ordinary point probabilities are sufficient, they should be used.

A piecewise combination is such that the combined Belief (or Plausibility) of a proposition (or subset of the
Universe) A depends only on A, and not on any other proposition B # A.

The order-independence requirement is rather natural and hardly questionable. To better see what a non-piecewise
combination would look like, imagine two experts providing some knowledge about propositions (subsets) of a
" (compact metrizable) Universe U in terms of Belief/Plausibility/Communality functions (Bel;, Pls;, g; for i =1,2).

We want to combine the knowledge provided by both experts and determine the Belief (Bel), Plausibility (Pls) or
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Communality (g) functions associated with the result of this combination. The “piecewise combination” requirement
insures that, for every proposition 4 € U, Bel(A), Pls(A) and ¢(A) depend only on A. Since everything we know
about proposition A is the knowledge provided by the two experts (Bel;(A), Pls;(A) and ¢;(A) for i = 1,2), we
conclude that Bel(A), Pls(A) and g(A) must be functions of Bel;(A), Plsi(A) and ¢;(A) (i = 1,2) and of these values
only: Bel(A) = f(Beli(A), Bely(A); Plsy(A), Plsa(A); q1(A), ¢2(4)), etc. If we drop the requirement, then Bel(A)
may depend on Bel(B) or Pls(B) or ¢(B) for another proposition B # A. In the extreme case, Bel(A) could depend

on the Belief values of all the propositions of & , in which case we say that combination is a global operation.

Finally, THEOREM 3 only constrains the construction of Belief/Plausibility functions from subsets of & . Indeed,
(closed) subsets of U are the most basic pieces of evidence one can obtain from the World (they are binary in nature),
and in fact, they are the only ones that are directly accessible by simple physical measurements from the World,

without involving complex cognitive processes.

Hence, if one wants to use an order-independent and point-compatible operator different from the Mean probabilistic

operator, one must drop at least one of the following premises:

1) combination is not piecewise: the combined Belief of a proposition may depend on the Belief of other
propositions.

2) the construction of Belief functions is piecewise but does not deal directly with subsets of ¢/ : the inputs are
other Belief functions. We must assume that “Belief functions can be found in the World” and measured
directly without any construction process from subsets of /. As this is obviously not the case in physical
World, it is clear that we are working in a human World, where human beings (experts, witnesses, etc) are the

only sources of information.

In systems where the sources of information are not human, or at least not only human, we must exclude possibility

2 above: the construction of Belief must be either probabilistic (Mean operator) or global (non-piecewise).

5.4 construction of Fuzzy sets from World evidenvce

It is clear that the Fuzzy set theory suffers from the same weakness as the DS formalism, namely the absence of
any systematic scheme for constructing Fuzzy set membership functions from World evidence. Some authors even

argue that this absence prevents it from being a “scientific theory”, relagating it to a mere “engineering technique”...
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In view of the relation between Plausibility/Communality functions and (u.s.c.) Fuzzy membership functions, it is

clear that the following corollary of THEOREM 3 holds:

THEOREM 3. The only order-independent, poini-compatible and piecewise combination operator that allows the

construction of general (u.s.c.) Fuzzy sets from (closed) subsets of a Universe is the Mean operator.

The strongest argument against one of the premises of the above theorem is the ontological claim that “both the
physical and human Worlds are fuzzy” according to which fuzzy membership functions can be measured directly even
in the physical World and used for further combinations. This claim has been discussed at length in [21] and seems
difficult to refute for the human World. However, engineers have been increasingly aware of the difficulty of measuring
membership functions in the physical World experimentally without using some sort of statistical construction. And
indeed, there are some good reasons to think that the simple pieces of information “belongs/does not belong to a set”
precede the more complex membership functions, and thus that the latter can be induced from the former.

If we reject the “fuzzy physical World” claim, we may conclude from THEOREM 3': in systems where the sources
of information are not human, or at least not only human, the construction of Fuzzy membership functions must be
either probabilistic (Mean operator) or global (non-piecewise). Note that this rejects the classical “fuzzy connectives”
Min and Max! Indeed these operators are order-independent and piecewise, but do not allow the construction of

general (=non-crisp) u.s.c. Fuzzy sets from subsets of the Universe.

6. Concluding remarks

Mathematically related theories may differ in their interpretations, but unless these are part of a meta-framework,
they are entirely arbitrary. Some authors ([1], [24]) have strongly argued that the DS formalism should not be
confused with any other, and in particular that it is “non-probabilistic” in nature (cf. introduction of [24]). But
as Dubois and Prade point out in a comment of [16] (p.282), Shafer has reinterpreted Dempster’s upper and lower
probabilities in terms of personal plausibility and belief. However, he has just modified the terminology. Terminologies
are important since they link pure mathematics to physical or conceptual entities, but they are interpretations too
and therefore arbitrary. Indeed, computers are rather indifferent to terminologies and no computer will ever be able

to distinguish between the allegedly “non-probabilistic” DS formalism and the theory of a.s. non-empty Random
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(Closed) Sets.

Considering these equivalences, why did we choose the RACS approach instead of one of its equivalent or related
forms? The 3 components (imprecision, uncertainty, topology) of this approach play the role of azioms of the resulting
theory, but they can be (at least partially) justified: Stone representation theorem for Set theory, betting behaviour
and “scoring rules”([3]) for Probability theory and Mathematical Morphology ([7],[8],[26]) for topology. RACS theory
is general enough for most practical applications, including those that involve uncountably infinite spaces, but not
so general as to deal with useless, purely mathematical abstractions. The concept of statistical dependence makes it
richer than the DS formalism and as a matter of fact, intuitive properties, such as idempotence, cannot be expressed
in the latter.

The RACS approach, therefore, provides a powerful and sufficient framework for the representation of imprecision,
uncertainty and fuzziness in Artiﬁciél Intelligence, as well as a unified view of the concepts of belief/plausibility,

possibility /necessity, upper/lower probabilities and semi-continuous fuzzy sets.

Appendix

Proof of PROPOSITION 1:

o (24) = (25)

Suppose that f verifies (24) and let Af,..., A}, be any finite family of subsets of Z/. Then let Ao = ()| A} and

i=1,..n

Ay = Al i=1,...,n. {Ao,A1,...,As} is a finite family of subsets of & and we can apply (24): f(Ag) =

N 4)< 3 (—1)"'H‘1f(ﬂj=1 A U U Al and since [ A C U 4], equation (25) follows.
i=1,..,n Ic{1,..n} iel i=l,..,n iel
T#0

Furthermore, if A C B then f(A) < f(AU(B\ A)) = f(B) and f is increasing.

o (25) =>(24)

Suppose that f is increasing and verifies (25). Let Ag, A1,..., A, be any finite family of subsets of & and

Aj=A;UAy, i=1,...,n. Then AgCAU [ A= ) (AUA)= (1 A; Andsince f is increasing,

izl,...n i=1,..,n i=l,..,n

we can write: f(Ao) < f( N (=D (Y AL (the rightmost inequality resulting from (25))
i=1,.., ierl

ooy TH c{1,..., n}
178
and since |J A} = [J (4o U A;) = Ag U | A, we obtain (24). QED
i€l i€l i€l

A dual proposition can be obtained by changing f into 1 — f°.

PROPOSITION 2:



Let (92, Zq, Prob) be a probability space, U be a compact metrizable space and Xy its Borel o-algebra . Let C be
a closed convex set of (regular, o-additive) probability measures. Then there exists a (Zq, Xy)-strongly measurable

mapping T' defined on ) and taking values in F(U) C P(U) such that:

VA €Sy, InfP(4)=Prob(l C 4)

(39)
and Sup P(A4) = Prob(T hits A)
Pec
if and only if class C verifies:
Va2 1, ¥(Ai,...,4)€ @), YPec P(JA)z Y (DM Inf(P(()4) (40)
i=1 1c{i, ..n} iel

or equivalently:

Va>1, Y(Ay,...,A.) € (Su)", YPeC P((14)< Y (—1)”'+1§ug(P(UA,~)) (40)
i=1 Ic{1,..,n} € iel

Note that (39) implies Prob(T' = §) = 0, i.e. T must be a.s. non-empty. ‘

e Let us first show the “only if” part of the proposition. The (Zq, i )-strong measurability of mapping I' : @ = F(U)
implies its (Zq,X’) measurability, where X' = Tr(y) is the Borel o-algebra of F(U) equipped with the Hit or Miss
topology induced by the topology of &. Hence, T' is a RACS of U and its capacity functional Pr (resp. Tr)
must verify the conditions of Choquet’s theorem ((1) and (3) resp.). But Pr(4) = Prob(I' C A) = }}ég P(A) and
Tr(A) = Prob(T hits A) = ilelg(P(A)), so that II’IElg and ilég) must statisfy (3-iii) and (1-iii), respectively. Since

both functionals are increasing, Propositions 1 and 1" hold and they must verify (25') and (25) respectively, which

obviously imply (40) and (40").

e Conversely, let P, = JIDrég and P* = Sup. Conditions (i) and (ii) of the Choquet theorem (3) (resp. (1)) are verified
Pec

by P, (resp. P*) by construction, and condition (3-iv) (resp. (1-iv)) results from Proposition 1’ (resp. 1).

The inner regularity of the measures P € C implies (see e.g. [27], p.448): VP € C, P(On) 1 P(O) whenever O, T O

in @. This obviously implies: Sup(P(0,)) 1 Sup(P(0)) whenever O, T O, i.e. P* = Sup is ls.c.- on O, which

Pec PeC Pec
implies that P* is u.s.c. on K ([4], p.31).
Similarly, the outer regularity of the measures P € C implies: VP € C, P(K,) | P(K) whenever K, | K in K. This

obviously implies: 119r€1£(P(K,,)) l II)relg(P(I\.)) whenever K, | K, ie. P. = })rétc' is u.s.c. on K or equivalently I.s.c. on

O (condition (3-ii)).
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By the Choquet theorem, P, (resp. P*) is therefore the capacity functional Px (resp. Tx) of a (a.s. non-empty)

RACS X, which is nothing but a multivalued mapping strongly measurable w.r.t. Xx and Xy. QED

Proof of PROPOSITION 3:

If the proposition holds for possibility measures, it holds for necessity measures by duality. Let II be a Zadeh
possibility measure. Conditions (31-i and ii) obviously imply (20-i and ii). Let us show by recursion that (20-iii) is
also satisfied:

o for n = 2, (20-iii) is ¥(A4, B) € PU)?, T(ANB) < I(A)+1(B) - (AU B). But II(AUB) = Max(Il(4), I[(B)):
if TI(A) > I[(B), then (AU B) = II(A) and since II is increasing II(A N B) < I[(B). By exchanging A and B, (20-iii)
holds if II(A) < II(B) too.

e let n > 2 be an integer and suppose that (20-iii) holds for n. Let (A1,..., 4n, Any1) € PU)™ . We can write:

> ()P Max{(4)} = Y (- Max{II(4))}

ICq{1,...n+1} iel 1c{2,...n} el
+ . (DM Max{Il(A1), TI(An 1), Max{TI(4:)}}
I1c{2,...,n}
— 3 (-1)MH Max{II(A;), Max{TI(4:)}}
Ic{2,...,n} el
= Y ()M Max{Tl(4n4), Max{TI(4:)}}
Ic{2,...,n} i€

(41)

Suppose that II(An4+1) > I(A;). Then Max{II(Al),H(A,,H),l\ﬁle%x{H(A;)}} = Max{H(AnJ,.l),I\’{Ieaix{H(Ai)}} and

(41) reduces to

Z (=M1 Ma}x{H(A,-)} = Z (=) 1+ Max{I(4;)} > II( ﬂ 4;)  (recursion assumption)
IC{L,nt1) € IC{Ln} iel i=1,..n

>(Ap41 N ﬂ A;) (I increasing)

i=1,..,n

Similarly, if TI(An41) < I(4;), Max{II(4;), H(A,,+1),1\£I€a}x{H(A,-)}} = Max{II(4,), MEI}X{H(A,')}} and thus:

Z (=1)l1+ Mz}x{H(A,-)} = Z (=) Max{II(4;)} > II( ﬂ A;)  (recursion assumption)
IC{L,..n+1} i€ 1c{2,..n+1} i€l i=2,..,n+1

>I(A N ﬂ A;) (I increasing)
i=2,..,n+1
which proves (20-iii) for n + 1. QED

Proof of THEOREM 3:

Let us prove the theorem in the equivalent RACS framework.
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Let X1,..., Xn be n subsets of the (compact metrizable) Universe ¥ , T, , ..., Tx, (resp. Px,,...,Px, and Rx,,..,Rx,)
their hitting (resp. including and implying) functionals. Our goal is to construct a RACS X from the n (deterministic)
RACS X; using an order-independent piecewise and point-compatible operator. This is equivalent (Choquet theorem)
to constructing capacity functionals Tx and Px from Xj.
The piecewise requirement insures that, for every compact K € K(U), Tx(K) and Px(K) depend only on K. In a
general topological space, the only information one can get from the two given sets is whether they hit or miss each
other or whether one is included in the other. And indeed, the only information we have concerning K is contained
in Tx, (K),...,Tx,(K), Px,(K),...,Px,.(K) and Rx,(K),...,Rx,(K), which are all binary valués (since X; are
deterministic). Hence, T'x(K) and Px(K) should be functions of only these values:

Tx(K) = f(Tx,(K),...,Tx,(K); Px,(K),..., Px,(K); Rx,(K),..., Rx,(K))

Px(K) = ¢(Tx,(K),...,Tx.(K); Px,(K),...,Px,(K); Rx,(K),..., Rx,(K))
Let K, and K3 be two compacts such that X; C Ky UK,, X ¢ K1, X1 ¢ K2 and X, hits Ky N K5, and such that
the other X; (i # 1) have the same spatial relations with K; as with K3, K3 U K3 and K; N K, (we can always find

X1,..., Xy such that such K; and K, exist). Since, in general:
Tx (K1) < Tx (K1 U K3) < Tx (K1) + Tx (K2) — Tx (K1 N Ka)

we get:
f(l, ey Tx (K1);0, ..., Px, (K1); Rx, (K1), ..., Rx, (K;))

< f(1, .y Tx, (K1); 1, ..., Px, (K1); Rx, (K1), . Rx, (K1)

< f(1, ..., Tx, (K1); 0, ..., Px, (K1); Rx, (K1), ..., Rx, (K1)

from which we deduce:

(1, ..., Tx,(K1); 0, ..., Px, (K1); Rx, (K1), ..., Rx, (K1)

= (1, Tx,(K1); 1, ..., Px, (K1); Rx, (K1), ..., Bx, (K1)

which shows that f does not depend on Py, . Similarly, f does not depend on Px, (i=1,...,n):
Tx(K) = f(Tx,(K), ..., Tx,(K); Rx,(K),. .., Rx, (X))

By considering two compacts such that Ky N K, C X3, K1 ¢ X1 and Kz ¢ X, and such that the other X; (i # 1)
have the same spatial relations with K; as with K5, K; U K5 and K; N K5, we can show that ¢ does not depend on

Rx,:

Px(K) = g(Tx,(K),..., Tx,(K); Px,(K),..., Px,(K))
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Now reduce all pieces of evidence to singletons of U : X; = {z;}. Then, Tx,(K) = Px,(K) for all k, and thus:
Px(K) = ¢ (Tx,(K),...,Tx,(K))

Our point-compatibility requirement insures that the resulting RACS X should be a random point variable and we

know that this is so iff Px = T'x. Hence, we must have:
f(TX1 (.K), s ;TX,.(K);RXI(K); ‘e ,RX"(_K)) = g,(Txl(K), e ,TX"(.K))

which proves that f cannot depend on Rx, and f = g’. Now, the order-independence assumption insures that f only
depends on the total number of 1s and Os and not their positions as arguments. This is the same as saying that f
depends only on the sum of its (binary) arguments: f(ay,...,an) = f*(T iz, @:). Since X is arandom point, Tx must
be additive, which implies that f* itself must be additive: Vp € {0,...,n—1}, f*(p+1)= f*(p)+ f*(1). Noticing
that Tx (U) = 1 = f(1,...,1) = f*(n) and Tx(9) = 0 = f(0,...,0) = f*(0), we conclude: Vp € {0,...,n}, f*(p)=
p/n and hence:

VK € /C(U), Tx(.K) = Z?.—:l ZX;(I{)
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Topological spaces
Hausdorff spaces
Regular spaces
Completely regular spaces
Normal spaces
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Fig1 The main types of topological spaces

Fig.2: Hit or Miss topology (F; and F, belong to the same neighborhood Op, N0y, N0y, NO'K)
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Upper/Lower probabilities induced by a set of probability meaéures

<> (Generalized Possibility/Necessity theory

Upper/Lower probabilities induced by a multivalued mapping
<= Random Closed Set (RACS) theory

Almost surely non-empty Random Closed Sets
<= Dempster-Shafer theory (Belief/Plausibility)

Upper semi-continuous Fuzzy sets

Zadeh Possibility/Necessity measures

Fig.4: Mathematical links between the theories of section 3

in a compact metrizable topological space




RACS theory Fuzzy Set

theory
Prob (X hits K) T

_ TX(K) Prob (X hits {k1})
| = uS(k)

| |
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Random point Finite
theory Probabil i.t ies
) —r>
Prob ( {x} hits K) Prob ( {x} hits {k?})
= Prob (x € K) = Prob (x=5k)

Fig.5! Both the classical Random point theory and the theory
of (u.s.c.) Fuzzy sets are particularizations of the RACS

theory, as singletons are particular compact subsets.
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