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ABSTRACT 

The musculo skeletal apparatus of the arm transf_gpns motor commands via muscle 

forces into joint torques. A stable equilibrium posture with zero net force at the hand 

is specified when the joint stiffness is stable, and the net joint torque is zero. The 

transformation from a stable spring-like muscle space into joint and hand space 

can potentially induce hand postural instability. 

In this study I show kinematic and static constraints of the neuro-musculo-skeletal 

arm of the monkey which are needed for the postural stability of the hand. My results 

enhance the previously proposed impedance control theory, and present new aspects 

for controlling the hand stiffness. A new term, the angular stiffness of individual 

muscles, is introduced. Using muscles with varying moment-arms, I show that while 

individual muscles may have unstable angular stiffness, only the summation of the an-

gular stiffnesses of the individual muscles determines the joint (and hand) postural sta-

bility. 

A computer model of the arm, based on biological measurements, with 17 muscles, 

is shown。 Themodel is used to determine the effect of a given muscle activation pat-

terns on the posture and stability of the hand. 

Using the equilibrium point hypothesis, arm movement is modeled as a gradual shift 

of a stable equilibrium posture of the hand along a desired trajectory. Given initial 

and final equilibrium postures of the hand, and using a minimum potential energy 

change constraint, the simulator derives the motor commands to the muscles for creat-

ing the desired trajectory. 
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1. INTRODUCTION 

The broad purpose of this work is to study, in a kinematic and static approach, the 

way in which the primate central nervous system (CNS) maintains the hand at a 

desired posture, and how it controls the movement of the hand. 

The hand is at an equilibrium position when its velocity is zero, no external force 

acts on it, and the net internal force at the hand, produced by the muscles, is zero. 

The postural stability of the hand is shown when it is displaced by a small transient 

external disturbance from an equilibrium position. It is characterized by a restoring 

force generated by the muscles for returning the hand to its original position. The pos-

tural stability was shown both in the absence and presence of feedback (Bizzi et al. 

1986; Feldman 1986; Mussa-Ivaldi et al. 1985; Taub et al. 1975). Modeling muscles as 

tunable elastic elements led to the development of the equilibrium point hypothesis 

(EP) for the control of posture and movement (Bizzi et al. 1986; Feldman 1966, 1986; 

Hogan 1985). These observations suggested that postural stability results from the 

CNS coordinating the activity levels of agonist and antagonist muscles around a joint. 

When the torque due to the flexor muscles around a joint T1, cancels the torque due to 

the extensors Te, an equilibrium position is defined for that joint (Fig. 1). An estimate 

for evaluating the stability of a planar "spring-like" hand was proposed using its sym-

metric stiffness matrix (Fig. 1). 
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The hand equilibrium position is stable if and only if all the eigenvalues of the hand 

stiffness have a negative real part (Ogata, 1970). In our case the eigenvalues must be 

real and not complex (Johnson et al. 1989) because K is a n xn real symmetric matrix 

(Mussa-Ivaldi et al. 1985). 

2. ILL-POSED MOTOR-CONTROL PROBLEMS 

Voluntary-movement control is an ill-posed rather than well-posed problem. A prob-

lem is well-posed when its solution exists, is unique and depends continuously on the 

initial data. Ill-posed problems fail to satisfy one or more of these criteria. Most 

motor-control problems are ill-posed in the sense that their solution is not unique. 

In a classical set of experiments, Bizzi et al. (1982, 1984) showed that arm move-

ments, both in intact and deafferented monkeys, consist of a gradual shift of the hand 

along a set of intermediate stable equilibrium positions while the hand moves from the 
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Fig. 1. A schematic planar 2-joint arm model. Top: One double joint extensor and an 

elbow single joint flexor muscles are shown. An equilibrium position for a joint 

is specified when the torque due to the flexor muscles around that joint T1, can-

cels the torque due to the extensors Te. When both joints are at equilibrium the 

force at the hand, F, is zero, and the hand is also at equilibrium. Bottom-left: 

When the hand is displaced from a stable equilibrium position, an elastic restor-

ing force is observed. Plotting the magnitudes of the restoring forces, following 

O.OlxlO―2m displacements around the equilibrium position, as a distance from the 

equilibrium position, creates stiffness ellipses. Bottom-right Typical directions 

and relative magnitudes of the restoring forces at O.OlxlO―2m displacements from 

the equilibrium position of the hand. The directions of the restoring forces are 

not necessarily towards the equilibrium position. The stiffnesses data were 

obtained from the monkey-arm simulator, described in this paper. The stiffness 

representation was proposed by Mussa-Ivaldi et al. 1985. 
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initial to the target position. The equilibrium point hypothesis (EP) is very attractive 

because its unified treatment of posture and movement is consistent with these experi-

ments. 

The EP cannot by itself control arm movement, because no tools are specified for 

solving the following ill-posed problems: (A) Which trajectory (hand path and veloci-

ty) should be used while moving the hand. (B) Given a solution to (A), what motor 

commands should the muscles receive to specify each intermediate state of the hand 

while it is moving. Solutions to problem (A), the minimum-jerk model, and to prob-

lem (B) the backdriving algorithm were proposed (Flash and Hogan 1985; Mussa-

lvaldi et al. in press). 

The minimum-jerk model estimates the smoothest hand trajectory during movement. 

Assuming that the movement starts and ends with zero hand velocity and acceleration, 

the minimum-jerk model predicts a straight hand path with a bell-shaped velocity 

profile. These predictions are in good agreements for unconstrained point to point hand 

movements in the horizontal plane in front of the body (Flash 1987; Morasso 1981; 

Uno et al. 1989). 

The backdriving algorithm implements the experimental evidence (Bizzi et al. 1982, 

1984) and the EP by modeling arm movements as a gradual shift of the hand along a 

set of stable intermediate equilibrium points from the initial to the final hand positions. 

Moving the hand from one intermediate point to another during movement is done by 

an active change in the motor commands to the muscles. 

The ill-posed problem of finding the new motor commands to the muscles is solved 

by a pseudo-inverse which minimizes the change in potential energy stored in the mus-

cles, while creating the driving motor commands to move the hand from one inter-

mediate point to the next. 

In this work I use the minimum-jerk model to create the hand trajectory, and the 

backdriving algorithm to predict the motor commands to the muscles. 

3. A PLANAR 2-JOINT ARM MODEL 

A planar 2-joint model of the arm is shown in Fig. 1. The torso, upperarm, and 

forearm links are modeled as rigid one dimensional line segments, representing the 

bones. The 3 links are interconnected by the shoulder and elbow revolute joints. The 

relative angles of rotation are 01e [-45°, 90°] for the shoulder and 02e [30°, 135°] for 

the elbow. Link lengthes, attachment centers on the bones and volumes of the muscles 

were measured by anatomical dissections in 2 rhesus monkeys. A total of seventeen 

muscles including shoulder, elbow and two-joint flexors and extensors have been in-

eluded in the model (Table 1, Domay et al. 1989; Domay 1990, 1991). 

An adult rhesus monkey (Macaca mulatta) whose weight was 9.86 Kg was used for 

the 1st dissection, after being sacrificed and perfused through its heart with 4x10-3記

of saline solution (0.9 % NaCl water solution). The muscles listed in Table 1 were 
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TABLE 1, THE DISSECTED MUSCLES. 

Muscle Origin Insertion Function 

Latissimus Dorsi Vertebrae Humerus Shoulder Extensor 

Posterior Deltoid Scapula Humerus Shoulder Extensor 

Teres-Major Scapula Humerus Shoulder Extensor 

Teres-Minor Scapula Humerus Shoulder Extensor 

Infra-Spinatus Scapula Humerus Shoulder Extensor 

Pectoralis Major Capsularis Clavicula Humerus Shoulder Flexor 

Pectoralis Major Sternalis Sternum Humerus Shoulder Flexor 

Anterior Deltoid Clavicula Humerus Shoulder Flexor 

Coraco Brachialis Scapula Humerus Shoulder Flexor 

Triceps Lateralis Humerus Ulna Elbow Extensor 

Triceps Medialis Humerus Ulna Elbow Extensor 

Brachialis Humerus Ulna Elbow Flexor 

Brachio-Radialis Humerus Radius Elbow Flexor 

Pronator Teres Humerus Radius Elbow Flexor 

Triceps Longus Scapula Ulna 2-Joint Extensor 

Biceps Brevis Scapula Radius 2-Joint Flexor 

Biceps Longus Scapula Radius 2-Joint Flexor 

' -------――•三
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exposed and their centers of attachments were marked by drilling metal screws into the 

bones. The volumes of the muscles were measured by water displacements. The mon-

key skeleton was cleaned and reassembled to a configuration similar to the one used 

by alive monkeys (Bizzi et al. 1986) during experimental horizontal arm movements 

(Fig. 2). 

Planar projection of the 3-dimensional skeleton was done by x-ray analysis (Fig. 3). 

The lengthes of the upperarm and forearm links were measured to be 15.SxlO―2 and 

20.2x10―2 m・respectively (Fig. 3). The coordinates of the centers of attachments of 

the muscles on the bones were measured from the planar projection of the x-ray (Fig. 

3), and confirmed by using standard textbooks (Hartman and Straus, 1933; Berringer et 

al. 1968; Gray 1959). A second dissection on another adult rhesus monkey was done 

to confirm qualitatively the coordinates of attachments of the muscles to the bones. In 

the second dissection the same 17 muscles were removed and their volumes were 

measured serving as duplicates to the results obtained from the 1st dissection. Each 

volume of the muscles obtained in the second dissection was scaled by the total 

volume of the muscles from the 1st dissection divided by the total volume of the mus-

cles from the 2nd dissection. After scaling, the difference between duplicate volumes 

obtained for each muscle were less than 10%. Table 2 summarizes the average 

volumes and the coordinates of attachment of the muscles. 

Each muscle is modeled as either a straight line, or partially a straight line and par-

tially a curved line wrapped around its individual pulley(s) at the joint(s). As an ex-

ample, the geometry of the shoulder flexor muscle pectoralis major capsularis is shown 

in Fig. 4A. The radii of the pulleys around the joints were estimated, based on the x-

ray analysis, to be 1.0xlO―2m for the shoulder flexors and extensors and for the elbow 

flexors. The radii of the pulleys for the elbow extensors were estimated to be 

1.sx10-2m. 

One of the more prominent features of muscle behavior is the increase of output 

steady-state force which accompanies both an increase in its length or an increase in 

its neural input. The length and motor-command dependence of muscle force gives 

the muscle a behavior analogous to that of a tunable mechanical spring. Analysis of 

the static isometric length-force curves reported for deafferented cat preparation (Rack 

and Westbury 1969) or intact monkeys (Zeffiro 1986) showed that static muscle forces 

can be estimated using the following linear equation: 

f = K(u) [1 (0)-l。(u)]= muscle 
force 

u E [ 0, 1] = neural control input (2) 

The motor command u can have any value from zero to one. K(u) is the negative 

muscle stiffness (of opposes 8/), l (9) is the length, and l。(u)is the rest-length 

(length when J = 0). A bigger motor command will increase K and decrease I。9







TABLE 2, GEOMETRY AND 

VOLUMES OF THE MUSCLES 

Muscle Origin Insertion Volume 
(mx10-2) (mx10-2) (m3x10~) 

1 Latissimus Darsi (-5.5, -10.0) (2.1, 1.0) 50.0 

2 Posterior Deltoid (0.8, -4.4) (5.2, 1.5) 21.3 

3 Teres-Major (-0.2, -6.4) (2.8, 0.5) 25.3 

4 Teres-Minor (0.2, -5.0) (0.8, 0.6) 4.75 

5 Infra-Spinatus (-0.2, -4.8) (0.8, 0.6) 26.4 

6 Pectoralis Major Capsularis (-4.8, -0.8) (2.7, 1.5) 37.0 

7 Pectoralis Major Stemalis (-5.5, 1.3) (2.7, 1.5) 33.0 

8 Anterior Deltoid (-2.4, -2.0) (5.2, 1.5) 15.1 

， Coraco Brachialis (-1.6, -1.0) (6.0, 1.5) 4.3 

10 Triceps Lateralis (-12.2, 0.2) (-0.8, -1.6) 45.8 

11 Triceps Medialis (-5.6, -0.2) (-0.8, -1.6) 26.5 

12 Brachialis (-5.7, 0.7) (2.3, -0.3) 15.2 

13 Brachio-Radialis (-5.0, -0.2) (16.5, 0.8) 24.4 

14 Pronator Teres (-1.2, -0.5) (9.3, 0.3) 9.5 

15 Triceps Longus (0.4, -2.2) (-0.8, -1.6) 45.8 

16 Biceps Brevis (-1.6, -1.0) (2.7, 0.5) 28.0 

17 Biceps Longus (-0.73, -1.5) (2.7, 0.5) 26.5 
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Fig. 4. Geometric models of the shoulder flexor muscle pectoralis major capsularis. 

(A) Initial Model: The muscle originates from the torso link at a. The insertion 

of the muscle to the upperarrn link is marked as b (0 = -45°) or c (0 = 90°). The 

joint angle affects muscle length and whether it is wrapped around its pulley at 

the joint (b) or is unwrapped (c). (B) Stabilized Model: The muscle is con-

strained by connective tissues represented by the effective origin d and the 

effective insertion e or f. Appendix C describes the heuristic approach which was 

used to estimate the effective origins and insertions. 
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increasing the produced muscle force. 

Based on those findings, each muscle is represented in this work as an elastic ele-

ment whose rest-length and stiffness are regulated by a motor command, using the 

above equation. Measured volumes and estimated rest-lengthes were used as scaling 

factors, based on in vivo parameters of the triceps which served as a reference muscle 

(Zeffiro, 1986). A simplified physiological cross-section area (An et al. 1981), used 

for muscle stiffness scaling, was calculated by dividing the measured muscle volumes 

by their rest length. Appendix A gives more details on the estimation of muscle 

stiffnesses and rest-lengthes. 

A computer model of the arm was created in object oriented Lisp. An early version 

of the software, containing both a forward arm model and the backdriving algorithm 

(McIntyre et al. 1989), was further developed. Based on the developed software, and 

the biological measurements, a planar model of the monkey's arm, with 17 muscles, 

was created (Dornay et al. 1989; Dornay 1990, 1991). Modeling muscles as tunable 

elastic elements, any set of motor commands to the muscles gives a simple well-posed 

solution for muscle forces, joint torques, hand position and hand force. The equili-

brium position of the arm, where the force produced by the hand is zero, corresponds 

to a configuration in which the potential energy stored by the muscles is at minimum. 

The backdriving algorithm, described before, was implemented to simulate planar hand 

movements. 

4. INITIAL HAND STABILITY AND MOVEMENTS 

Computer simulations revealed that the hand was stable, and movement could be 

simulated, only in a small portion of the workspace (Fig. 5). The inability to simulate 

movements was related to postural instability of the hand. (The backdriving algorithm 

depends on the hand stability, and cannot operate when either of the two eigenvalues 

of the stiffness of the hand is not negative). 

5. HAND STABILITY AND JOINT STIFFNESS 

A necessary and sufficient condition for hand stability at equilibrium (F = 0) is 

that the joint stiffness R is stable。Toshow it I will use, following Hogan, 1985 and 

McIntyre, 1990: 

R= 

祝,! dT I 

ae1 ae2 
祝五 i3T2 

ae1 ae2 

＝ 
.. 
]Olnt 

stiffness 〇＝鳳＝盈悶 T=[互]= I点靡e
(3) 
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Fig. 5. Initial hand stability. A: When the control input to each muscle was 0.5, the 

hand was stable at the equilibrium position (0.14, 0.14) m. This equilibrium posi-

tion was used as a center for 0.10, 0.15 and 0.20 m radius circles in the hand 

workspace. Using the backdriving algorithm, the hand could be moved to points 

a and e, but not to points b, c, d, f, g, h. The failure was because the hand 

stiffness was unstable during these movements. B: Superimposing the areas 

where the joint stiffness is unstable on the previous figure. The control input to 

each muscle was 0.5. Increasing or decreasing the control input to each muscle to 

1.0 or to 0.0 increased or decreased respectively the area in which the joint 

stiffness was unstable. 

,
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J is the jacobian transformation matrix from joint angle to hand coordinates. 

Using K =―= dF dF ae dF -
ax ae ax ae 

J 1 

and based on the principle of virtual work which gives T = iF (Mussa-Ivaldi 1986), 

the joint stiffness R is defined as: 

dT d(JT F) T dF dJT R=面-= ao = J面→ず

→ 喜=(JT)ー'[Rーか］

→ K = (JT)―1いかJr,
When F = 0 we get: 

K = (JT)―IRJ-1 = [J—1『R[バ (5) 

Based on Sylvester's law of inertia, equation (5) shows that when the hand is at equili-

brium then a stable stiffness of the joint is a necessary and sufficient condition for a 

stable stiffness of the hand (Strang 1988; Ogata 1970). 

6. CONDITIONS FOR JOINT STABILITY 

We assume that K is symmetric (Mussa-lvaldi et al. 1985) and therefore R is also 

symmetric. Expressing the symmetry of R by p we get 

p = [羹l= [~l • R = [:・・・R,r, l (6) 
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In order for R to be stable, we must find the constrains such that the two eigen-

values 入 ofR are negative (Ogata 1970). Assuming (the reasonable assumption, 

Mussa-Ivaldi et al. 1985) that the reciprocal angular stiffness p is smaller in magni— 

tude relative to R 1,1 or R 2,2 , Appendix B proves that 

R1,1 < 0, R2,2 < 0, ←→入1,2(R)< 0 (7) 

Using these assumptions, we can see that: 

A necessary and sufficient condition for a stable joint stiffness is having stable (or 

negative) shoulder R 1,1 and elbow R 2,2 stiffness. It should be emphasized that this 

finding is not trivial because of the coupling of the joints by the double joint muscles 

(Hogan 1985). 

7. JOINT STABILITY AND MUSCLE ANGULAR STIFFNESS 

The contribution of a muscle force to a joint torque is: 

dl 
't'=一ae f =μf (8) 

μis called the moment-arm of the muscle. The contribution of a muscle to a joint 

stiffness or the angular stiffness of a muscle is defined as: 

a-c 
r =― ae 

(9) 

The meaning of the angular stiffness of a muscle is as follows: (A) If r is stable 

(negative) then changing the joint angle by some external torque will create a restoring 

torque by that muscle which will try to decrease the change in joint angle. (B) If r is 

not stable then changing the joint angle will create a torque by the muscle which will 

further increase the change in joint angle. 

The joint torques and stiffness can be expressed using the contributions of the indi-

vidual muscles: 
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where't, r contributions of a muscle to a joint torque and angular stiffness, m, n mus-

des affecting shoulder or elbow. 

8. MUSCLES CAN HAVE UNSTABLE ANGULAR STIFFNESS 

The general expression of angular stiffness of a muscle around a joint is: 

r =詈＝祝::)=μ 誓＋闘f (11) 

Defining x = aμ/ae = momvel (a new name introduced in this paper), the angular 

stiffness of a muscle is: 

r=μ at ae + xJ (12) 

Considering the specific linear force length model used in this study (Eq. 2), we get: 

r = Kμ2 +が(l-lo) (13) 

Since the muscles themselves are always stable K < 0 and muscles cannot push 

(l -l 0) > 0 the term面 contributesonly stability (negative) and the term XK(l -l。)can 

become unstable, depending only on X・This shows that 

A necessary condition for unstable angular stiffness of a muscle is that 

its momvel X is negative. 

When a muscle have unstable angular stiffness, 
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Kμ2+が(l-l。） >0 ← μ2(0) + X(0) [/ (0) -l。(u)]< 0 (14) 

In this case, increasing the control motor command u by the CNS will decrease l。(u)
without any effect onμ, X or l, m油ingthe angular stiffness of that muscle even more 

unstable. 

As a typical example, stability analysis of the shoulder flexor pectoralis major cap-

sularis, whose geometry was shown in Fig. 4A, is shown in Fig. 6. 

An intuitive meaning of muscle angular stability can be gained by considering Figs. 

4A and 6, in which pectoralis major capsularis is undergoing a flexion from a very 

extended position. Let us suppose that during this flexion movement the joint as a 

whole is always at stable equilibrium positions due to the contributions from the other 

muscles, and that the motor command to pectoralis major capsularis does not change. 

While the muscle is wrapped around its pulley its length is decreasing linearly, its 

moment-arm is constant (-0.01 m/rad), and its momvel is zero. The tension (magni-

tude of force) is also decreasing because the muscle force is proportional to the mus-

cle length. Its positive (flexion) torque which is equal to force time moment-arm is 

decreasing and therefore it is a stable muscle tending to decrease the joint flexion. 

This stability is shown by the constant negative stiffness. 

When the muscle becomes unwrapped (0 = 11°) the muscle length and tension con-

tinue to decrease but the magnitude of the moment-arm (which is not constant any 

more) is increasing very fast and the resulting flexion torque is increasing. This causes 

the muscle to contribute instability to the joint stiffness, as it tends to enhance the 

flexion. Note that in this case the momvel is negative (a necessary condition for mus-

cle instability) and the angular stiffness is positive (a sufficient condition for instabil-

ity). At a later stage in the flexion movement (depending on the motor command to 

the muscle) the flexion torque due to the muscle starts to decrease. At this stage the 

muscle becomes stable again, and its angular .stiffness becomes negative. 

9. A NEW GEOMETRIC MODEL 

Stability analysis similar to the one done to pectoralis major capsularis in Fig. 6 was 

done to all the 17 muscles. The results indicate that many muscles have joint angles 

in which, when the motor command is high, their angular stiffness is not stable. This 

results in the unstable hand stiffness shown in Fig. 5. This is not a biologically possi-

ble situation, as the hand was shown to be mechanically stable even in deafferented 

monkeys (Bizzi et al. 1982; Taub et al. 1975). Although it is theoretically possible 

that the CNS will try to choose in such a case only those motor・commands which 

would ensure postural stability, it is not easy (or always possible) to implement such 

an algorithm. The backdriving algorithm, used in the current computer simulation, 

assumes that the summation of the angular stiffnesses of all contributing muscles 
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Fig. 6. Stability analysis of pectoralis major capsularis. A flexion movement is shown 

in which the shoulder angle changes from -45°to 90°. In the Geometry panel 

(upper-left), the muscle length, l, decreased from 0.087 to 0.048 m. The moment 

arm of the muscle around the shoulder joint, μ, was initially constant at -0.01 

m・rad-1, but at 0 = 11°it started to decrease, eventually reaching its final value 
of -0.029 m・rad―1. The momvel X was zero at the 1st stage of the movement, 

jumped to -0.018 m・rad―2 at 0 = 11°, and then started to increase reaching a 

final value of -0.0075 m・rad―2. In the Force, Torque and Stiffness panels, 

the behavior of the muscle is shown for six different motor commands u . From 

geometrical analysis the muscle can have unstable angular stiffness in 

0 e [11°, 90°] because in this range x < 0. Statics analysis, investigating its 

angular stiffness, shows that it must have unstable angular stiffness in 

0 e [11°, 40°] and must have stable angular stiffness in 

0 E [-45°, 11°]u[48°, 90°]. 
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always defines a stable joint stiffness. If I accept this assumption, how can we achieve 

that desired situation, without throwing away the linear length tension curves and the 

biological measurements ? 

Looking at the geometric model of the muscles, shown in Fig. 4A for pectoralis 

major capsularis, a significant simplification is that muscles go directly from origin to 

insertion. This creates unrealistic muscle geometries, with huge moment-arms and 

negative momvels. In real biological arms, connective tissues constrain the line of 

action of the muscles. This can be modeled as frictionless tethereds between the center 

of attachments of the muscles to the bones and the joints, through which the muscles 

must pass. If the "effective" origins and insertions which corresponds to those teth-

ereds will fall exactly on the "pulleys" located around the joints (see Fig. 4A), the 

muscles will have constant moment-arms and their angular stiffness will always be 

stable. This is not a desired geometry because in real biological arms the moment-

arms of many muscles are not constant and vary considerably as a function of joint 

angle (Amis et al. 1979; An et al. 1981; van Zuylen et al. 1988). As a compromise 

and a best guess, I estimated and added effective origins and insertions to the muscle 

geometries (effective origins and insertions were not measured in this study). The 

heuristic approach employed for estimating the effective origins and insertions is 

described in Appendix C. 

A new, more complex (and more realistic) arm geometry was created. Adding an 

effective origin and insertion between the measured (center of) attachment and the 

joint increased the angular stability of the individual muscles. The new geometry 

chosen for pectoralis major capsularis is shown in Fig. 4B. The coordinates for the 

effective origins and insertions were calculated to ensure the joint stability for every 

possible neural control input. 

10. ARM MOVEMENT FROM POSTURE 

A variety of arm movements between a broad range of different positions in the 

workspace were produced, using the minimum-jerk model for planning the desired tra-

jectories and the backdriving algorithm for choosing the motor command inputs. A 

typical movement is shown in Fig. 7. 

11. DISCUSSION 

Using an analysis by design approach, a simplified model of the arm with muscles 

extending from origin to insertion was created. Following the design, stability analysis 

gave insight into the consequences of this design. The instability associated with the 

initial simplified model was solved by designing a more complex arm in which 

effective origins and insertions restrained the line of actions of the muscles. Interest-

ingly, the purely functional considerations resulted in a more realistic structure of the 
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Fig. 7. A typical equilibrium-point movement is simply a gradual shift of the hand 

along a set of stable intermediate equilibrium points from the initial to the final 

positions. The trajectory predicted by the minimum-jerk model is a straight line 

with 26 intermediate points defining a bell-shaped velocity profile. A neural con-

trol input to the 17 muscles is specified for each intermediate point, defining it as 

an equilibrium point. The neural control input profiles for all the muscles is very 

smooth. When the motor command to a muscle reaches a minimum (0) or a max-

imum (1), it stays there as long as the backdriving algorithm expects it to 

decrease or increase, respectively. In this case other muscles take over and pro-

duce the needed change in torque. The 13th muscle shows this behavior in the 

middle of the movement. S = shoulder, E = elbow, D = double joint muscle, e = 
extensor, f = flexor. The serial muscle numbers refer to Table 1 and Table 2. 
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arm. Similar function-structure relationships could affect the evolution process in 

which the structure of the primate arm was selected. 

It is not known whether real biological muscles can have unstable angular 

stiffnesses. Most of the studies concerning hand stability ignored that possibility, 

probably because they considered only muscles with constant moment-arms (Flanagan 

et al. 1990; Flash 1987; Hogan 1985). It was shown by a few studies (Amis et al. 

1979; An et al. 1981; van Zuylen et al. 1988) that muscles with varying moment-arm 

are common for the human arm, and this is also my intuitive impression for the mon-

key. Using the linear length tension curve assumed in this model, a muscle with a 

constant moment-arm must have a stable angular stiffness because its momvel is by 

definition 0, while a necessary condition for angular instability is that the momvel 

should be negative. The current study is therefore more realistic and revealing from 

the geometrical point of view compared to previous studies. 

When some muscles contribute instability, the joint can remain stable, because only 

summation of the angular stiffnesses of all contributing muscles will determine the 

joint stability. In our case, shown in Fig. 5, using the initial geometric model, the 

summation of angular stiffness caused instability in a broad range of the hand 

workspace. Using a more complex and realistic geometric model, individual muscles 

may have unstable angular stiffnesses but the joints are stable for any possible motor 

commands to the muscles. 

Increasing the motor commands to an unstable muscle, will increase its contribution 

of instability. Theoretically, this may make incorrect the assumption (Hogan, 1984) 

that coactivation is always a simple way to increase the hand stability. 

Even if individual muscles can contribute instability to the joints it is still possible 

that in the real biological arm the summation of the angular stiffnesses is always nega-

tive, and therefore the joints are always stable, regardless of the motor commands to 

the muscles. However, if the summation may become unstable, then the CNS should 

choose only those neural inputs which ensure joint stability. This would increase the 

flexibility and complicate the control of hand impedance. 

This work is the 1st implementation of the backdriving algorithm (Mussa-Ivaldi et 

al. in press), describing the control of movement from posture and using a detailed 

planar model of the primate arm with 17 muscles, according to the principles of the 

equilibrium point hypothesis. A typical arm movement is shown in Fig. 7. Given the 

initial motor commands to the 1 7 muscles, and a final desired hand position and force, 

the forward arm model calculates the initial hand position and stiffness, the minimum-

jerk model specifies the desired trajectory, and the backdriving algorithm calculates the 

flow of motor commands to the muscles and the driving force to move the hand along 

the desired trajectory. The final motor command specifies the final hand position, hand 

force, and hand stiffness. No direct control of the final hand stiffness is present in the 

current model, and I intend to address this question in a later work. 

A disadvantage of the simulator is that it has no memory of previous computations. 
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Determining the desired trajectory using the minimum-jerk model is instantaneou_s, but 

the laborious backdriving algorithm takes about one hour for each trajectory. In order 

to overcome the essence of this problem, a fast learning, tree-structured network 

(Sanger, in press) was trained to remember the knowledge obtained by the backdriving 

algorithm. (Dornay and Sanger, in preparation). 

I would like to emphasize that this study is based only on kinematic and static 

analysis. It does not discuss the dynamics of the arm, and its role in the control of 

hand stability (Flanagan et al. 1990; Flash 1987). 
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APPENDIX A: Estimation of muscle stiffnesses and rest-lengthes. 

The following values were obtained for the reference muscle, using data 

reported by Zeffiro, 1986. 

Vr = 29 X 10-6記=volume of reference muscle. 

n。=7.8 X 10-2 m = rest length of reference muscle when the motor com-

mand to the muscle, u , is zero. 

lぶ=6.3 X 10-2 m = rest length of reference muscle when u = 1. 

Kl= -0.6 x 102 N・m―1 = stiffness of reference muscle when u = 0. 

k「=-2.3 X 102 N・m―1 = stiffness of reference muscle when u = 1. 

The following linear function was defined for the reference muscle: 

Kr (u) = (K「-Kci) u + Kci = the stiffness of the reference muscle. 

The following were defined for any muscle: 

I oo = the rest length of any muscle when u = 0. This value was not measured. 

It was estimated to be 0.99 of the minimum length of the muscle in the 

workspace. The minimum length of the muscle was calculated, using the meas-

ured geometry, by the simulator program. The above estimation assured that the 

muscles will always have some residual tension, which is very close to zero when 

the motor command to the muscle is zero, and the muscle is at its minimum 

length. 

V = the volume of the muscle, measured in the dissections. 

K(u) =喜筐rK'= the stiffness of the muscle. 

The above stiffness scaling was proposed by FA Mussa-Ivaldi (personal 
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communication) and is described in detail in McIntyre, 1990. It is based on the 

assumption that if muscle sarcomeres each have identical stiffness properties, the 

stiffness of a muscle is directly proportional to the number of sarcomeres in 

parallel and inversely proportional to the number of sarcomeres in series. The 

cross-sectional area provides an estimate of the number of sarcomeres in parralel, 

while the rest-length corresponds to the number in series (McIntyre, 1990). 

l o(U) = l!!:!.. [1ぶー lふJu + loo = the rest-length of a muscle. 
lふ
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APPENDIX B. 

CLAIM: 

Given A = [~ ~] is any real symmetric matrix whose eigenvalues are 

入1,2(A)then: ｝
 

a < 0, c < 0, ac > b 2 〈） 入i,iA)< 0 (Bl) 

PROOF: 

Let us define: 

T = Trace(A) = a+c 

D = Determinant (A) = ac -b 2 

then following Johnson et al. 1989, 

入1,iCA)= 
T士✓T2-4D 

2 
(B2) 

Expanding equation (B2) gives us: 

T = a+c =入1+入2 (B3) 

D = ac-b2 =入ふ (B4) 

Since A is a (n x n) real symmetric matrix, then all the eigenvalues of A are real 

(Johnson et al. 1989), which gives us: 

T2 -4D~0 (BS) 
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Direction 1: 

Given入1< 0 and入2< 0 proof that : 

(i) ac > b2 

(ii) a < 0 

(iii) C < 0 

Proof of Direction 1: 

入1< 0'入2<0→応 >0→D >0→ ac-b2 > 0→ ac > b2. 

End proof of (i). 

ac >炉→ (a > 0, c > 0) or (a < 0, c < 0). 

If a > 0, c > 0 Then a +c > 0 . But we know that a +c =入け入2< 0. 

So we must have a < 0, c < 0 . End proof of (ii) and (iii) . 

End Proof of Direction 1. 

Direction 2: 

Given a < 0, c < 0, ac > b 2 proof that : 入1,2< 0 

Proof of Direction 2: 

ac >炉→ ac-b2 > 0→ D >0→ 0 >-4D → T2 > T2 -4D 

→ ITI>炉 -4D (remember that T2 -4D~0) • 

T>炉-4D or T < -炉 -4D

but T = a+c < 0→ T<-炉 -4D →T+炉 -4D < 0 

T士✓戸— 4D→ T士✓T2 -4D < 0 → 入1,2(A)= - < 0. 

End Proof of Direction 2. 



-19 -

APPENDIX C: Estimation of effective origins and insertions. 

The following is an heuristic approach for substituting lacking biological parame-

ters about the effective origins and insertions of the muscles. While the estima-

tions obtained do create a stable arm geometry, those values should not be con-

sidered as true replacements to real biomechanical measurements. 

Fig. 1 C describes a muscle affecting a joint O. The muscle inserts on the link 

屈.The coordinates of the insertion are (c,d) , and the distance from the joint 

to the insertion is P. The radius of the pulley of this muscle around the joint 

(Fig. 4A) is R. The line connecting O to P transverses the pulley at coordinates 

(a,b). I assume for simplicity that the effective insertion is located on the line 

segment between (a,b) to (c,d). 

The following nomenclature is used to describe the coordinates of the effective 

insertion Z on the line戸．

1. If the effective insertion falls on P, the initial muscle geometry, shown in 

Fig 4A, is produced. This case is marked as 100%, and indicates the most 

unstable geometry. 

2. If the effective insertion falls on R, the most stable geometry, marked as 

0%, is produced. 

3. In the general case the effective insertion falls on a point Z, and this is 

described as (Z-R)/(P-R)xlOO percent. 

I assume for simplicity that the same "percent" is applied both to the effective 

origin and to the effective insertion. 

A stable geometry could be found for each of the 17 muscles by changing its 

effective geometry in small steps from 100% to 0%, and measuring the 

corresponding muscle angular stiffnesses while the motor command to the muscle 

is u = 1.0. Usually, the effective geometry closest to 100% in which the muscle 

was stable in all the workspace, was chosen. For example, an effective geometry 

of 15% guarantied the stability of pectoralis major capsularis for any motor com-

mand and any joint angle in the hand workspace (see Fig 4B). I should 

emphasize that this is the maximal requirement, for the highest possible motor 

command and in all the workspace. Brachio-radialis was chosen intentionally as 

an exception, and its chosen effective geometry (75%) allowed it to be unstable in 

about half of the elbow workspace. 

The following effective geometries were chosen for the 17 muscles: latissimus 

dorsi, 15%; posterior deltoid, 5%; teres major, 10%; teres minor, 100%; infraspi-

natus, 100%; pectoralis major capsularis, 15%; pectoralis major stemalis, 10%; 

anterior deltoid, 25%; coracobrachialis, 45%; triceps lateralis, 90%; triceps medi-

alis, 100%; brachialis, 15%; brachio-radialis, 75%; pronator teres, 40%; triceps 

longus, 0.001 %; biceps brevis, 0.001 %; biceps longus, 0.001 %. This geometry 
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ensures the joint stability, and hand stability at equilibrium, for every possible 

motor command and hand position in the workspace. 
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Fig. lC. The geometrical location of an effective origin or an effective insertion 

of a muscle. Please refer to the text of Appendix C for explanation of this figure. 
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