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Abstract 

We develop a computational theory and a neural network model which 

coherently explains early, middle and high-level vision problems based on the 

anatomical structure and physiological functions of the visual cerebral cor-

tices. Our computational theory is based upon a hierarchical and stochastic 

model of image generation with highly redundant, multiple representations 

at different description levels. We propose that feedforward neural connec-

tions from the lower to the higher visual areas provide approximated inverses 

of image generation, while feedback neural connections from the higher to 

the lower areas provide forward models of image generation. We propose a 

global, hierarchical model of interactions between several visual cortical ar-

eas, in which internal representations of the 3-D world in each area are spec-

ified. First, the solutions to several visual computational problems, such as 

boundary detection, motion, color, stereo and the shape from shading prob-

lem, are outlined in our general framework. In particular, the shape from 
shading problem will be dealt with in detail by a concrete neural network 

model and computer simulations. Second, brightness illusions, the Mach 

band and Craik O'Brien illusion are simulated by a neural network model 

base_d on our general framework with emphasis on the disappearance of the 

illus10ns under high contrast conditions. Finally, a learning algorithm called 

the "cross-covariance learning rule", with which the internal models of the 

visual world can be acquired in the visual cerebral cortices, is proposed. 
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1. Introduction 

Marr (1982) postulated that the objective of early vision is to estimate the geo-

metrical structures of visible surfaces in the 3-D world from a 2-dimensional im-

age. During the 1980s, computational studies of vision were advanced consid-

erably. Many were based on the following propositions made by Marr (1982): 

1. There are several modules in early vision, each of which is specialized 

for processing different types of information from the 2D image (i.e., 

binocular disparity, shading, occluding contour, color, motion parallax 

and so on). The objective of these modules is to reconstruct the 2・1/2-

D sketch which represents depth and/or orientation of visible surfaces 

within the viewer-centered coordinates. 

2. Because the 2-D image data compared with the 3-D world is compressed 

through imaging process, computation in each module can not be prop-

erly solved unless some constraints to possible solutions, in other words, 

prior knowledge about visible surfaces, are given beforehand. In the 
brain, such computation is effectively and effortlessly performed by using 

assumptions such as smoothness of visible surfaces or rigidity of visible 

3-D objects. 

A mathematical problem is called well-posed when (1) there exist solutions, 

(2) the solution is unique, and (3) the solution depends on data of the problem 

continuously. If one or more of these conditions are not satisfied, the problem 

is called ill-posed. Poggio, Torre and Koch (1985) pointed out that vision 

can be regarded as an inverse process of the optics, and that it is an ill-

posed problem. This inverse problem cannot be solved without additional 

information. According to Marr's theory, vision modules use some natural 

constraints. Mathematically speaking, vision modules must find the solution 

which is most consistent with both given image data and natural constraints. 

That is, the solution minimizes the cost function which consists of a data 

fitting term and a constraint term. Poggio, Torre and Koch (1985) coherently 

formulated many algorithms proposed in computational studies of vision within 

the framework of this standard regularization theory. Let S denote geometrical 

structure of a visible surface in the 3-D world, I the image intensity, and R 

the optics process. vVe then get: 

I= RS. (1.1) 
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In standard regularization theory, the estimation of S is given so that the 

following objective function is minimized. 

III-RSIド+入IIPSII 〗 (1.2) 

here Pis the operator which represents constraints on the geometrical structure 

of a visible surface. 入iscalled a regularization parameter and determines the 

ratio of the first data fitting term and the second term regarding the constraint 

on geometry. 入isinversely proportional to the signal to noise ratio. For the 

simplest example, if the original image is degraded by adding white gaussian 

noise, 入isproportional to the noise variance. When both R and P are linear, 

then the objective function 1.2 becomes a quadratic form in S. Then, in some 

cases, one-shot algorithms, which calculate the required S from I using only 
feedforward computation, can be derived. 

The limitation of the standard regularization theory was that discontinu-

ities in the 3-D world could not explicitly be dealt with. Poggio and collab-
orators (Poggio, Torre & Koch, 1985) extended their theory to deal with the 

discontinuities by utilizing the coupled Markov random field (MRF) model 

which was proposed by Geman and Geman (1984). 

Geman and Geman (1984) developed the coupled MRF as a prior knowl-

edge in an image restoration problem from a degraded image. They formulated 

the problem as a maximum a posteriori (MAP) estimate. Let y denote an ob-

served degraded image data, x the original image, and 1r probability. The 

MAP estimate is used to find the x which gives the maximum value for the 

following a posteriori probability under the condition of a given y. 

1r(xly) = 
1r(ylx)1r(x) 

1r(y) . 
(1.3) 

This is the Bayes formula. 

The MRF model of an image is defined as the model in which the state at 

each lattice point depends only on the state in its neighborhood. If we adopt 
this as a model of the original image in the image restoration problem, then 

the prior distribution 1r(x) becomes the following Gibbsian. 

(l/Z) exp{-U(x)}, 

L Vc(x). 
CEC 

He、re,Z is a normalizing constant called the partition function in statistical 

physics. In the above equations, the local property of the MRF is reflected in 

1r(x) 

U(x) 

(1.4) 

(1.5) 

~ 
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the fact that the total potential energy U (x) is the summation of many local 

potential energies Ve (x). Where C is the clique, a set of lattice points, every 

pair of whose distinct lattice points are neighbors. C is the set of cliques. The 

potential energy Vc(x) is local in the sense that it depends only on the states 

of the lattice points within the clique C. 

For this MRF model, the posterior distribution also becomes the Gibbsian 

and the posterior energy can be represented as follows: 

Up(xly) = I: </>(xsふ） + I: Vc(x), (1.6) 
s
 

CEC 

here s represents the lattice site. </> measures compatibility between the data 

y and the estimated original image x, and is local, that is, it depends only on 

(xs, ぬ） at a finite number of sites. The first term is the data energy which 

represents the discrepancy between the observed data y and the estimated 

image x. The second term corresponds to the a priori knowledge about the 

image. The first and the second terms of eq. 1.6 correspond to the first and 

the second terms of eq. 1.2, respectively. In this formulation the MAP estima-

tion problem is transformed into finding the minimum of eq. 1.6. Hence, the 

standard regularization theory can be regarded as a special case of a more gen-

eral MAP estimate (Poggio, Torre & Koch, 1985). Geman and Geman (1984) 
proposed the stochastic relaxation algorithm which can be used in conjunction 

with simulated annealing to find the global minimum of the energy. 

One of the most outstanding contributions of Geman and Geman's 1984 

paper was the introduction of the "line process" which is an imaginary stochas-

tic process representing the object's boundary. By arranging the line process 

above the "intensity process" which represents the gray scale of the image, a 

hierarchical, stochastic model of the image was developed. In addition, the 

line processes may represent a discontinuity of several feature dimensions, in-

eluding color, brightness, depth, and so on. 

It turned out that the line process and the couped MRF are key tools not 

only for image restoration but also for early vision. In particular, this approach 

can be applied to integrating information across feature dimensions, that is, 

integration of different vision modules in middle vision (Poggio, Gamble & 
Little, 1988). However, the integration scheme in this model was rather simple. 

For example, the conditional probability of depth discontinuity becomes high 

when there exists a luminance edge (intensity discontinuity) at the same site. 

Recently, algorithms which realize higher visual functions have been devel-

oped for artificial neural networks (see for example Rumelhart & McClelland, 
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1986). These functions include: association, learning and generalization. Fur-

thermore, it is interesting that some kinds of optimization problems can be 

solved by neural networks. In such networks an energy function can be de-

fined, and one can design the architecture of an analog neural network which 

minimizes a given energy function (e.g., Hopfield & Tank, 1985). In these 

models, the stable steady state of the network is the solution which minimizes 

the objective function. 

In the next section, we will give the psychological, physiological and anatom-

ical bases of the coupled MRF as a model of visual cerebral cortices. However, 

we must note that these experimental data support only such MRF behav-

iors as filling-in and discontinuity detection, and its local interaction prop-

erty, but not stochastic calculation itself such as the Gibbs sampler. Actually, 

it is difficult to imagine that the exact stochastic calculation realized in the 

MRF is implemented in the brain even though the coupled MRF has mathe-

matical similarities close to those of the Boltzmann machine (Ackley, Hinton 

& Sejnowski, 1985). However, most fortunately, the recent development of 

the theory of mean-field approximation of stochastic neural network models 

(Hopfield, 1982; Hopfield, 1984; Koch, Marroquin & Yuille, 1986; Peterson 
& Anderson, 1987; Iba, 1989; Hinton, 1989; Yuille, 1990) makes a mean-field 

approximation to the coupled MRF more biologically plausible. The mean-

field-approximation neural network of the MRF has the following distinctive 

features. First, its dynamics described by ordinary differential equations pos-

sesses a Lyapunov function, in other word, an "energy". The energy value 

decreases as the state of the network changes according to its dynamics. It is 
guaranteed that the state converges to a "local" minimum of the energy. Sec-

ond, the network has intrinsic recurrent connections. Third, these connections 

are local, which guarantees the Markov property. Finally, the neural field is 

isotropic, that is translation invariant. 

In particular, Koch, Marroquin and Yuille (1986) showed that the cou-

pled MRF model can be implemented approximately by an analogue neural 

network which has a close similarity to the Hopfield model (1984). This is a 

deterministic recurrent neural network model which can be regarded as the 

"mean field approximation" of the MRF and stochastic relaxation. In this 

model, the binary property of the line process is deliberately represented by 

the sigmoid activation function of artificial neurons. 

The computational approach to early and middle vision using the cou-

pled MRF is mathematically transparent and elegant, and very appealing as 

a parallel processing scheme from the engineering point of view. However, 
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the following problems iieed to be resolved to further develop the MRF or its 

neural-network approximation as a computational model of biological visual 

systems. First, relaxation type neural networks which minimize energy have 

been rejected as realistic models of the brain because they require a number 

of iterations, and hence can not explain the brain's relatively fast calculations. 

Second, it is not apparent how high-level vision problems are managed by local 

models such as the MRF. For example, global and abstract information in an 

image needs to be processed to solve pattern recognition problems. However, 

by definition, the MRF is a local model and hence can not process global and 

abstract information in images. Third, learning rules of the MRF need to 

be developed so that internal models can be acquired from image examples 

without teaching about the 3-D world. Finally, computational theories and 

algorithms developed so far based on the MRF do not directly correspond to 

morphological structures of multiple visual cortical areas. 

Marr (1982) pointed out that an information processing device (brain) must 

be understood at the following levels before one can be said to have understood 

it completely. (i) Computational theory. (ii) Representation and algorithm. 

(iii) Hardware implementation. Although in determining correct computa-

tional models and algorithms Marr himself took great advantages of mutual 

constraints vヽhichcome from studies at one level on studies at other levels, 

successive studies in computational vision seem to place too much emphasis 

on the independence of the above three levels and pay only slight attention to 

hardware constraints. In this paper, we develop a computational theory and a 

neural network model which coherently explains early, middle and high-level 

vision problems based on the anatomical structures and physiological functions 

of the visual cerebral cortices. 

2. Experimental support for a local model such as the 
coupled Markov random field model 

2.1 Psychological evidence 

In this section, we provide psychological evidence which supports the coupled 

Markov random field model for hu、!Danvisual processing. 

The most prominent features of the coupled MRF of Geman and Geman 

(1984) are the filling-in of the intensity process and the detection of discontinu-

ity by the line process. There are abundant psychological data which indicate 

the filling-in processes and the detection of discontinuity in the brain. Filling 

in of static retinal images, ganzfeld experiment results (Hochberg, Triebel & 

7
 



Seaman, 1951), neon color spreading, and surface perception in sparse random 

dot stereogram are examples. 

For example, we can perceive depth discontinuity when a pair of random-

dot stereograms are fused binocularly in the brain. That is, there exists a 

process which represents the discontinuity explicitly in several different di-

mensions in the brain. The different dimensions are color, brightness, depth 

and so on. The other important point is that there exists a filling-in pro-

cess. For example, we perceive a floating surface for random-dot stereograms. 

Furthermore, even for sparse random-dot stereograms, of up to 5% dot den-

sity, a surface can be perceived (Julesz, 1971, Wurger & Landy, 1988). Julesz 
and Chang (1976) found that we usually choose only the matches having the 

smallest disparity for an ambiguous stereogram in which there are many pos-

sible ways of matching its center. However, the particular match found can be 

biased by inserting unambiguously matchable dots at a particular disparity. 

This is an example of the filling-in process. 

From the psychological experiment of the stabilized retinal image, it ap-

pears that information for the non-edge region is filled in by interpolation 

based on information around the edges. When we see a red disc which is sta-

bilized on the retina, against a green background which is not stabilized, the 

color disappears in few milliseconds. And then the disc also disappears and 

we perceive only the homogeneous green background. This phenomenon indi-

cates that color and contour cannot be perceived in the stabilized condition. 

Furthermore, it is suggested that color and luminance information are not 

transmitted to the higher visual center but are inferred from the information 

around the edges where the neurons are activated continuously. This process 

is called the filling-in process (Yarbus, 1967; Gerrits & Vendrik, 1970). 

2.2 Physiological and anatomical evidence 

In this subsection we present neurophysiological and anatomical support for a 

local model such as the coupled MRF model for the visual cerebral cortices. 

We use the word "local" in the sense that any cell with a local receptive field in 

the visual field has synaptic inputs only from cells which represent neighboring 

areas in the visual field. 

One of the most prominent characteristics of visual areas is that the visual 

field is topographically represented in the cortex. Consequently, receptive field 

centers of the two neighboring neurons on the cortex are also close on the visual 

field. Anatomically, it is known that axons of the intrinsic neural connections 

• 
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within the same area extend typically only 2 to 3 mm horizontally to the cortex 

surface (Gilbert & Wiesel, 1983). Electrophysiologically, it was revealed by the 

cross-correlation method that the effective range of horizontal interaction is 2 

to 3 mm, and then the interaction strength decreases dramatically with the 

distance (Ts'o, Gilbert &'Wiesel, 1986). Toyama (1988) estimated that the 

inter-columnar interaction is an order of magnitude weaker than the intra-

columnar interaction in Vl. Consequently, if we regard the hypercolumn in 

Vl as a unit element for processing image data, the intrinsic neural connection 

in Vl can be said to provide only the nearest neighborhood interaction in MRF 

terminology. 

This locality of the internal image model is considered a result of hardware 

limitation regarding connection numbers rather than a merit. Because the av-

er age number of neural connections (synaptic inputs) per neuron is about 1000 

in the cerebral cortex and much smaller than the total number of neurons 1011, 

it would be computationally very inefficient if the long-range image interaction 

were to be modeled by using only the intrinsic connection. 

3. Forward and inverse models of image generation 

Modelling of the image generation procedure can be done at many different 

description levels. At relatively low level, as expressed by Horn's image ir-

radiance equation (Horn, 1977), image intensity can be determined from the 

depth and orientation of a visible surface, its reflectance and lighting condi-

tion. Description at higher levels is also possible. For example, image data 

could also be determined if the 3-D shapes, locations and velocities of objects 

arranged in the 3-D world are determined. We propose that a multiple-level 

description of the image generation procedure is used in the brain as described 

by the following image generation equation. 

I(μ,x,y, 入，t) R(△ G * I,dl, 沿I,v.L, sd, r(入），L,md, v, C, A, V, N, 0) 

R(s1, s2, s3, s4, ss, ss, s,, ss, sg, s10, sn, s12, S13, s11) 

R(S) (3.1) 

I represents light intensity of wavelength入atlocation (x, y) on the left (μ= 0) 

or the right (μ= 1) retina at time t. The right-hand side of the equation de-

scribes image generation procedure by nonlinear function R. Here, △ G * I is 

the convolution integral of the image with the Laplacian Gaussian function. 

Here, △ G=▽刊1/21r庄）exp{-(丑＋炉）/2び2}.dl and疋Iare the first and 
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second derivatives of the image along with a specific direction. v.l is a local 

velocity component in the direction with the maximum change of image in-

tensity. sd is surface depth calculated from stereo disparity. r(入） shows the 

reflectance of points on the visible surface to the light of wavelength入. L 

represents discontinuity such as occluding contours and junctions of different 

objects. L could be said to correspond to the line process. md is the depth 

and orientation of the visible surface calculated by various monocular cues. v 

is the location of the light source and its wavelength distribution. C denotes 

3-D locations of objects segregated by L. A represents various attributes of a 

distinct object such as color and texture. Vis the velocity vector representing 

translation and rotation of objects. N is the velocity vectors of the body, head 
and eye of the observer. 0 represents memorized images of 3-D objects. 

sd, md, r(入） and L together provide the 2・1/2-dimensional sketch of Marr. 

Estimation of V, N and O is high level vision. The estimation procedure from 
I to S can be called vision. 

We here propose a computational model and an algorithm where the visual 

cerebral cortices solve vision problems based on approximated inverse models 

of R, forward models of R, and internal models of S. vVe assume that vision 
computation is essentially a MAP estimation. Let us denote the occurrence 

probability of S by P(S), and denote the conditional probability of I for a given 

S by P(JJS). Because of the local interaction property of the visual cerebral 
cortices supported by the physiological and psychological evidence described 

in the previous section, we assume that these two distributions are Gibbs 

distribution with the corresponding energies U(S) and U(JJS). According to 
the MAP estimation, the visual cortices find S which minimizes the following 

a posteriori energy. 

U(S11) = U(IIS) + U(S) 
= 1/211Rtt{J -R(S)}ll2 + U(S). (3.2) 

Here RU is an approximated inverse model of image generation process R. As is 

well known in early vision, generally there does not exist R-1 because inverse 

optics is an ill-posed problem. However, it is possible to consider RU as an 

approximated inverse even when R-1 does not exist. Actually, many of the 

one-shot algorithms proposed in the computer vision field (see for example 

Marr, 1982) can be regarded concrete examples of RU. In 3.2, as is usual in 

Bayes formula, we neglected the constant term U(I) on the left side. 
We propose the global neural network model shown in Fig. 3 .. 1 which 

can minimize the energy of eq. 3.2. This is a deterministic neural-network 
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Internal Model of the Visual World 

s
 

8 -JU/JS 

Approximated Inverse Model 
of the Imaging Process 

Image / 

State of the Three-
dimensional World 

Highsr Visuail Csn tsr 

Forward Model 
of the Imaging Process 

lowsr Vis uai I Cs ntisr 

Thrss-di msnsion叫 VisuailWorld 

Figure 3 .. 1: Fundamental model of computational theory for visual cortical 

areas. 
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model which can be regarded as the mean-field approximation to the MRF 

as described in the introduction. Thus, it has the following properties. First, 

interactions between neurons are local. This implies not only that the intrinsic 

connections within each layer are local but also that connections between dif-

ferent hierarchical layers are topographic, and have quite restricted divergence 

and convergence. Second, the network is translation invariant. That is, for 

example, synaptic connection weights are uniform all over the visual field. 

Dynamics of the network can be described as follows. 

S(O) =が(I)

dS(t)/dt =が{I-R(S)} -8U(S)/8S 

(3.3) 

(3.4) 

In Fig. 3 .. 1, 2-dimensional image data I is represented in the lower visual 

center, and the representation of the visual world S is manipulated in the 

higher visual center. The model shown in Fig. 3 .. 1 has mirror symmetry with 

respect to the lower visual center. If 8{ R戌(S)}/8S= E holds approximately, 

then eq. 3.4 provides the steepest descent method of eq. 3.2. Here E is the 

identity map. 

Another interpretation of the dynamics 3.4 may also be possible, if序 can

be regarded as an approximation of the derivative of the inverse of R, that 

is, (8R/8s)-1. In this case, the dynamics can be regarded as a continuous 

version of a Newton-like method. Let us illustrate this. First, a function 

which measures the difference between the real image and the reconstructed 

image is defined: F(S) = I -R(S). The problem finding S compatible with 

the image data I is equivalent to finding the zero of F. The well known 

iterative method for this problem, the Newton method, is as follows: Sn+l = 
Sn -F'(S砂―lF(Sn) = Sn+ R'(S砂―1{1-R(S砂}. However, usually R'(S)ー1

can not be uniquely determined because of the ill-posedness of vision. A widely 

used alternative in this case is the following Newton-like method in which an 

approximation閉 ofR'ー1is used: Sn+1 = Sn +が(Sn){I-R(Sn)}, One shot 

algorithms represented by linear filters (for example Kersten, O'Toole, Sereno, 

Knil & Anderson, 1987, Hurlbert & Poggio, 1988) might be interpreted as 

examples of R'(St1. 

In both of the two interpretations, an essential condition of RU is that 

柁(0)= 0. This is automatically met if RU is a linear operator. 

It is known that different visual cortical areas are connected both by feed-

forward and feedback neural connections (Pandya & Yeterian, 1988). The 

feedback neural connection from the higher visual center to the lower visual 

center in Fig. 3 .. 1 provides an internal forward model of the imaging process 
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R. On the other hand, the feedforward neural connection from the lower visual 

center to the higher visual center provides an internal model of an approxi-

mated inverse Rti of R. Furthermore, an intrinsic neural connection within the 

higher visual center provides an internal model of Sas the gradient -8U(S)/ 8S 

of the potential energy. 

We explain model behavior according to eqs. 3.3 and 3.4 and Fig. 3 .. 1. 

When a new image I is input, for example after saccade, a rough estimate 

炉(I)of S is calculated in a one-shot manner by the feedforward neural con-

nection. However, this estimate is not the MAP estimate. Following this initial 

calculation, the model starts relaxation calculation using the loop composed 

of the feedback and feedforward neural connections. First, estimation of image 

data R(S) is calculated by the feedback connection from the estimation S in 

the higher visual center. Second, this estimation of image data is compared 

with the real image, and the error I -R(S) is calculated. Third, this error 

transformed by the feedforward connection intoが{I-R(S)} is fed back to 

the higher visual center. Fourth, the intrinsic connection in the higher visual 

center calculates the second term of eq. 3.4. 

Relaxation type neural networks which minimize energy have been rejected 

as a realistic model of the brain (Marr, 1982) because they require a number 

of iterations and can not explain relatively fast calculation by the brain. How-

ever, the proposed model overcomes this shortcoming by one-shot calculation 

with the feedforward neural connection which gives Rti. Becauseが(I)is a 

much better starting point than 0, the required number of relaxation itera-

tions is much smaller. In other words, even if the computation time is severely 

limited, the network can obtain a fairly good solution from the MAP stan-

dard. Furthermore, if the feedforward connections can be regarded as a linear 

approximation of the derivative of the image generation, it is well known that 

the Newton-method is much quicker in convergence than the steepest descent 

method around the zero point. 

4. Local, parallel and hierarchical model of visual cere-
bral cortices 

In the 1980s, many cortical visual areas have been identified in the monkey 

cerebral cortex (Fig. 4 .. la, Kaas, 1986). Figure 4 .. 1 b shows connection patterns 

between different visual areas (see for example Livingstone & Hubel, 1987a, b, 

Hubel & Livingstone, 1987, Zeki & Shipp, 1988). 

For the primary visual area (Vl) and the secondary visual area (V2), de-

13 



a
 posterior 

b
 

V1 V2 

Figure 4 .. 1: a. Visual areas in the Macaque monkey (modified from Kaas, 

1986). b. Connection patterns between visual areas. 
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tails of neural-network structures and functions of subsystems in each area have 

been intensively studied. A block diagram of the visual cortical areas is shown 

in Fig. 4 .. lb. Connections with arrows show feedforward neural projections, 

which exist in the early part of the visual cortex. On the other hand, connec-

tions without arrows show reciprocal neural projections; there are feedforward 

and feedback interactions among the higher cortical areas. 

In the following sections, we will try to answer the following questions 

based on our computational theory: (1) Why are there many cortical areas 

(Vl, V2, V3, V4, MT, MST, IT) in the primate brain? (2) Why are almost 

all connections between visual areas reciprocal? 

We first briefly illustrate what kinds of representations of the visual world 

are processed in each visual area, and then provide physiological and anatom-

ical support for this model in the following subsections. The model shown in 

Fig. 3 .. 1 is quite simplified in the sense that S is clamped and many visual 

areas are also clamped into a single layer. Fig. 4 .. 2 shows in which cortical area 

each s; in eq. 3.1 is represented, based on recent knowledge of neurophysiology 

and anatomy. 

The following is only a brief summary of our model. Full accounts of this 

will be given in the following. △ G * I is represented in layers 4Cf3 and 4Ca 
of Vl. dl and d2 I are represented in 4A and 4B of Vl. v.l is represented in 

4B of Vl. sd is represented in the thick stripe of V2. ,(入） is represented in 

the thin stripe of V2. L is represented in the interstripe area of V2. md is 

represented in V3. 11, C and A are represented in V4. Vis represented in MT. 

N is represented in MST. 0 is represented in IT. △ G * I is represented in both 
layers 4Cf3 and 4Ca. Similarly, dl and d2 I are represented in both 4A and 
4B. In these double representations, the former locations have high sensitivity 

and high temporal resolution. The latter has high spatial resolution. 

Parallel and hierarchical structures in Fig. 4 .. 2 reflect the corresponding 

parallel and hierarchical natures of the image generation process expressed 

in eq. 3.1. That is, representations s1, ・ ・ ・, s14 to be estimated in vision, are 

roughly classified into three groups: those mainly related to colors, r(入）， Aand 

11, those mainly related to shapes, L, C and 0, and those mainly related to 

motion, v.l, sd, md, V and N. This corresponds to the three parallel, vertical 

information flows of the anatomical structure of Fig. 4 .. 2. 

There is also a striking hierarchy in the anatomical structure shown in 

Fig. 4 .. 2 which corresponds to redundant representations of the imaging pro-

cess at different description levels in eq. 3.1. For example, anatomical relation-

ships between pairs of 4B of Vl and MT, interblobs of Vl and interstripes of 
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V2, thin stripes of V2 and V 4, are hierarchical. A mathematical formulation 

of this hierarchy will be given in the next section. 

4.1 Functions of the visual area 1 (Vl) 

We first describe physiological and anatomical support for our model regard-

ing the primary visual cortex (Vl). It is known that there are two parallel 

channels in the early visual system, which are called the magnocellular chan-

nel and the parvocellular channel, respectively. Magnocellular information 

from the retina goes through 4Ca to 4B in Vl (Livingstone & Hubel, 1984; 

Hubel & Livingstone, 1987; Tootel, Hamilton & Switkes, 1988, Hubel & Liv-

ingstone, 1990). The majority of the cells in layer 4B are simple (Livingstone 

& Hubel, 1984). Parvocellular information goes through 4C/3 to 4A and the 

interblobs and the blobs (Livingstone & Hubel, 1983; Livingstone & Hubel, 
1987a, Tootel, Hamilton & Switkes, 1988, Michael, 1988). It is suggested from 
physiological studies that color and luminance information is processed in the 

blobs (Livingstone & Hubel, 1987b). Intensity discontinuities are processed at 

several different scales in 4B and the interblobs. Tootell, Silverman, Hamilton, 

Switkes and De Valois (1988) showed that neurons in the interblobs generally 

respond to stimuli with relatively higher spatial frequencies. This is one rea-

son why we propose that the intermediate representation of the discontinuity 

is represented in the interblobs. Furthermore, there are binocular cells in 4B 

and in the interblobs (Hubel & Livingstone, 1987; Hubel & Livingstone, 1990). 

Thus, binocular disparity is also preprocessed in 4B and in the interblobs. 

4.2 Functions of th e visual area 2 (V2) 

There are 3 subsystems in V2; the thick stripes, the thin stripes and the inter-

stripes (Hubel & Livingstone, 1987, Tootell & Hamilton, 1989). These stripe 

subsystems communicate with each other. Furthermore, there are reciprocal 

connections between the thick stripes and 4B and the interblobs in Vl (Zeki 

& Shipp, 1988). The interstripes communicate with the interblobs in Vl and 

each other (Zeki & Shipp, 1988). From these connections and physiological 

data, it is suggested that the thick stripes compute the stereo depth (Hubel 

& Livingstone, 1987; Poggio, Gonzalez & Krause, 1988) from magnocellu-

lar (Livingstone & Hubel, 1987a, b) and parvocellular information (Schiller 

& Logotheris, 1990; Tyler, 1990). We propose that the interstripes compute 

physical discontinuities in the 3-D world, which do not directly correspond to 

mere intensity edges. This computation can be done by integrating informa-
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tion from several kinds of visual cues: intensity discontinuity information from 

the inter blobs, color discontinuity from the thin stripes and stereo information 

from the thick stripes. The thin stripes in V2 compute spectral reflectance 

(Hubel & Livingstone, 1987). Recently, the neurons which respond to the sub-
jective contour were found in V2 (Peterhans & von der Heydt, 1989; Von der 
Heydt & Peterhans, 1989). From our model, it is predicted that these neurons 
reside in the interstripes. 

4.3 Functions of the visual area 3 (V3) 

There is little decisive data to suggest computational functions of the neurons 

in V3 (but see Felleman & Van Essen, 1987). But structures of interconnec-

tions between V3 and other visual areas suggest our computational scheme 

for integration between higher order visual areas. There exist interconnections 

between V3 and V2, V4, MT and MST (Zeki & Shipp, 1988). We propose that 

V3 is the information processing center of monocular depth where monocular 

depth is represented, and that this calculation is executed through these four 

reciprocal connections. It is known that there are several cues for monocu-

lar depth perception. Computations of the surface orientation from various 

cues are called shape from shading, structure from motion, and structure from 

texture. The shape from shading problem is solved through the connections 

between 4B in Vl and V3, and between V4 and V3. The simple cells in 4B are 

supposed to detect the first and second directional derivatives of the intensity. 

The surface orientation, that is slant and tilt, can be calculated approximately 

from these derivatives and the illumination orientation and spectra of the light 

source which should be represented in V4 in our theory (see section 6 for a full 

description of the shape from shading problem). 

In our model (see below) V4 represents the position and spectra of illumi-

nation source, configuration among figure parts, and texture. We suppose that 

structure from motion is calculated through connections between V3 and MT, 

and that structure from texture is calculated through connections between V3 

and V4. 

Furthermore, there exist reciprocal connections between V2 and V3 (Zeki 

& Shipp, 1988). As already mentioned, in our model, binocular depth is rep-
resented in V2 thick stripes. Therefore, consistency between monocular depth 

and binocular depth could be guaranteed through these connections. We be-

lieve that the system consisting of V2, V3 and V 4, which interact with each 

other, is a consistency maintaining mechanism (Fig. 4 .. 3). vVe suppose that 
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the subjective contour is generated by the consistency maintaining mechanism 

which processes several kinds of visual cues and effects: contrast enhancement, 

occlusion, monocular depth. The effect of size constancy in the subjective con-

tour demonstrated by Coren (1972) is a good example of the phenomena which 

should be realized by this consistency maintaining mechanism. 

4.4 Functions of the visual area 4 (V4) 

From several physiological and anatomical studies, it is supposed that position 

and spectra of illumination sources, and configuration among parts (especially 

occlusion), and texture are represented in V4. There are some experimental 

data which support these hypotheses. The computation of spectral reflectance 

is supported by the physiological studies in which color Mondrian patterns were 

used as stimuli (Zeki, 1983). From the physiological study of human vision 

(Lueck, Zeki, Friston, Deiber, Cope, Cunningham, Lammertsma, Kennard & 
Frackowiak, 1989), it was revealed that V 4 is a center for color perception. On 

the other hand, some physiological findings suggest that both edge and texture 

information are processed (Desimone & Schein, 1987, Schein & Desimone, 

1990), in addition to color (spectral reflectance) processing. Furthermore, as 

described below, the receptive field of the V 4 neuron has a large suppressive 

surround. The property of the surround is the same in spectra and spatial 

frequency as the excitatory center. It was suggested that one of the functions 

of the neuron is to segregate a figure from a background by color and spatial 

frequency (Desimone, Schein, Moran & Ungerleider, 1985). 

4.5 Functions of MT  and MST 

It is known that the velocity aperture problem is solved in MT (Movshon, Adel-

son, Gizzi & Newsome, 1986). There exists experiment data which suggests 

that the velocity of the observer is calculated in MST. The disparity-dependent 

direction-selective neurons (Roy & Wurtz, 1990) and expansion/ contraction 
neurons (Tanaka, Fukada & Saito, 1989; Tanaka & Saito, 1989) are found 

in MST. It is believed that just as the expansion neurons could indicate the 

forward component of self-motion, the disparity-dependent direction-selective 

neurons could indicate the horizontal (rightward or leftward) component of 

self-motion (Roy & Wurtz, 1990). 
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Figure 4 .. 3: Consistency maintaining mechanism consisting of V2, V3, and 
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4.6 2-and-a-half-dimensional sketch 

Marr proposed a 2-1 /2-D sketch as an intermediate representation of the depth 

and orientation of visible surfaces and their discontinuities not within the 

retinal coordinates but within the viewer-centered coordinates. Therefore, it 

should be stable irrespective of the eye-movement. 

In our model, binocular depth is represented in the thick stripes, monocu-

lar depth is represented in V3, and edges are represented in the inter-stripes. 

Monocular depth is mainly visible surface orientation (and relative order of 

the surfaces in depth). Recently, it was found that the responses of some 

neurons in V3A for the visual stimulus are modulated by gaze-direction (Gal-

letti & Battaglini, 1989). Galletti and Battaglini (1989) believed that these 

neurons play an important role in the transformation from the retina-centered 

coordinates to the head-centered coordinates. Therefore, the 2-1 /2-D sketch 

corresponds to these representations in the three subsystems. This is very 

interesting because V2, which is a relatively lower center, plays a major role 

in expressing the 2・1/2-D sketch, which is considered as the integrative rep-

resentation of the results of calculation in the vision modules (Fig. 4 . .4). In 

our scheme, the representation is the output of the consistency-maintaining 

mechanism which is constructed by V2, V3, and V 4. Probably, it corresponds 

to the immediate perception of the world. 

In the conventional framework shown in Fig. 4 . .4, the 2-1/2-D sketch is 

constructed after integration of outputs from several different modules. Thus, 

the 2-1/2-D sketch is represented in the latter stages of the visual information 

processing. However, in our model, the 2-1/2-D sketch is represented in a 

relatively earlier stage of the visual information processing. This is possible 

because of interactions between multiple cortical areas by feedforward and 

feedback connections. 

4. 7 Functions of the inferotemporal cortex (IT) 

The inferotemporal cortex receives input information mainly from V 4, which 

plays an important role in pattern perception and recognition. From several 

computational studies, 2-dimensional representations from several different 

viewpoints must be represented in IT. These representations could be calcu-

lated from the information represented in V 4 as mentioned above. IT neurons 

participate in the short-term retention of visual features for behavioral use 

(Fuster, 1990). 

According to Marr's theory, the representation for the object recognition 
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Figure 4 . .4: The visual information processing scheme proposed by Marr 

(1982). There are several vision modules in the early visual process. In the 

middle visual process, the outputs of the modules are integrated into one 

viewer-centered representation, the 2・l /2-D sketch. 
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is the 3-D model representation. Recently, from psychological experiments it 

appears that this is not the case for human visual memory. Instead, several 

2-D representations obtained for several aspects of one object is the important 

representation for humans (Ullman & Basri, 1989). In accordance with the 

computational and psychological studies, it was found that there are many 

neurons in the IT and STS which respond to some specific aspect of the objects, 

including faces. Therefore, we believe that the appropriate representation for 

perception is the 2・1/2-D sketch, which is useful for object manipulation and 

navigation, and that the appropriate representation for recognition is some 

2-D aspects. 

5. Hierarchical interactions between cortical areas 

5.1 Computational model of hierarchical interaction 

The computational principle of the hierarchical structure pointed out in the 

previous section will be mathematically formulated with a simplified, hier-

archical model shown in Fig. 5 .. 1. In this model, the primary visual cortex 

estimates an intermediate representation S between the higher level represen-

tation S and the image I. These two representations are hierarchical in the 

sense that I= R(S), I A= R⑯)， S=凡(S),that is, R = R潰 2holds. Exam-

ples of pairs of S and S in Fig. 4 .. 2 are V in MT and叶 inlayer 4B of Vl, 

L in the interstripe of V2 and L in the inter-blob of Vl, and r(入） in the thin 

stripe of Vl and i-(入）．
Similarly, as in the previous section, we can calculate the MAP estimate of 

S and S by maximizing the following a posteriori probability. 

＾ ＾ 
P(S, Sil)= 

P(IIS, S)P(S I¥ S) 

P(I) 
(5.1) 

Here, we consider a purely hierarchical model of image generation where S 

can generate an image only via S as shown in the lower half of Fig. 5 .. 1. Then, 

instead of eq. 5.1, we need only minimize the following probability. 

P(JJS)P(SJS)P(S) (5.2) 

Correspondingly, the following potential energy is given. 

U(IIS)+ V(S)+U(SIS)+U(S) = 1/2jjR~(J)-Sll2+ V(S)+l/2IIR~ {S-Jら (S)}jj2+U(S) 
(5.3) 
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R~and R~are approximated inverse models of R1 and R2, respectively. 
We can derive the following dynamics of the neural network model shown in 

Fig. 5 .. 1 as an approximated steepest descent method or a Newton-like method 

of the above energy eq. 5.3. 

S(O) = R[ (I) (5.4) 

dS(t)/dt = 1吋(I)-s -av;as + 1ら(S)-S (5.5) 

S(O) = · R~R[(I) (5.6) 

dS(t)/dt = R~{S -R2(S)} -fJU(S)/8S (5.7) 

In the previous section, we stated that our model has only local interaction. 

Local interaction does not only imply locality in the visual field, but also in 

any visual representation of any area. For example, the orientation column 

in Vl could be viewed as an anatomical necessity to provide a meaningful 

internal model of the visual world under the condition of a limited number of 

connections. Furthermore, it is known that intrinsic connection is also local 

for higher visual areas. Consequently, we obtain the following prediction. If a 

specific description of the visual world is represented in some area of the higher 

visual cortex, it is represented in columnar structure within that area. 

The locality of the interaction exists not only for the intrinsic neural con-

nection but also for the feedforward and feedback neural connections between 

different visual areas. Thus, if the visual cerebral cortex were to possess only 

a single layer, it would not be able to describe the visual world with a global 

and abstract description, and hence would not be able to cope with middle or 

high-level vision problems. However, the real cerebral cortex and our model 

attain a global and abstract model by overlaying the local models many times 

as described in this subsection. 

Vl, V2, V3, V4 and MT are distinct vision modules, but nevertheless 

tightly connected. Thus, the overall visual system is interactive and com-

plex. In our computational theory, the V2-V3-V 4 complex forms an important 

and interesting system. This system estimates surface orientation and depth 

from different types of visual information. It is believed that this system is 

a consistency-maintaining-mechanism, and that perception corresponds to the 

activity pattern of the whole neural system. Of course, we can focus on spe-

cific dimensions (or attributes). Furthermore, we can control the activity of 

the different subsystems. For example, a priori estimation of the illumination 

source is usually biased toward the upper direction (Ramachandran, 1988), but 
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it can be changed by intention. We are interested in how the overall resulting 

activity changes within the V2-V3-V 4 complex when the activity pattern in 

one module is modified by attention. 

The mathematical framework developed for interactions between different 

hierarchical modules has important implications also for interactions between 

parallel modules such as those within the V2-V3-V 4 complex. Recently, inter-

actions between vision modules are intensively investigated through psycho-

logical experiments (e.g. Biilthoff & Mallot, 1988, Stevens & Brookes, 1988, 

Buckley, Frisby & Mayhew, 1989, Cavanagh, 1987). These studies indicate 

that an output from one module depends on outputs from other modules. Our 

theory again solves the interaction problem by a rough first estimate by one 

shot algorithm and then gradual and iterative modification of the estimate 

by relaxation computation. Even if two modules are in a parallel relation-

ship rather than a hierarchical relationship, either one module is dominant 

or the visual signal reaches one of the modules earlier than the other. Then, 

the dominant and early module sends its estimate to the other in a one-shot 

manner. Consistency of the outputs of the two modules will then be met by 

successive communications between them. This general architecture resolves 

the combinatorial explosion problem in vision caused by the large number of 

different visual cues (Ballard, Hinton & Sejnowski, 1983). 

5.2 Layered-neural-circuit model for hierarchical in-
teraction 

Fig. 5 .. 2 shows a layered-neural-circuit model for the hierarchical model de-

scribed in the previous subsection. This model takes into account layered struc-

tures of both the primary visual cortex and the higher visual cortex (HVC). 

The image data impinging on the retina is transformed into R[ (I) by feed-
forward calculation as shown in the first term of eq. 5.5. This calculation is 

done by the retinal neural network, the lateral geniculate nucleus, and the 

cortical network between pyramidal cells in the upper layer (Pl in Fig. 5 .. 2) 

and stellate cells in the IVC layer of Vl. The intrinsic recurrent connections 

shown by broken curves of Fig. 5.5 realize the third term -8V/応 ofeq. 5.5 

which corresponds to the internal model of S. Within this recurrent loop, 

there exist interneurons which realize nonlinear calculations. Pyramidal cells 

Pl receive synaptic inputs R2(S) (the fourth term of eq. 5.5) by feedback neu-

ral connections from the pyramidal cells in the deep and upper layers of HVC 

(P4 and P5 in Fig. 5 .. 2). While receiving these three kinds of synaptic inputs, 
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Figure 5 .. 2: Layered-neural-circuit model of the hierarchical structure com-

posed of the primary visual cortex and the higher visual cortex. 
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Pl estimates S based on eq. 5.5. Pyramidal cells P2 in the upper layer of Vl 
receive two kinds of inputs: S from Pl, and feedback input -R2(S) from HVC 

via nonpyramidal inhibitory interneurons. P2 calculates S -R2(S) based on 

these two inputs and sends it to HVC by the feedforward neural connections. 

This corresponds to the content inside the curly bracket of eq. 5.7. 

The feedforward signal calculated by P2 is then transformed into the synap-
~ A 

tic input R2{S-R2(S)} to P3 in the upper layer of HVC by stellate cells in the 

intermediate layer of HVC. This is the first term of eq. 5.7. The second term 

of eq. 5.7, which gives an internal model of S, is calculated by the intrinsic 

recurrent loop within HVC, shown by the broken curve in Fig. 5 .. 2. P3 in 

HVC estimates S based on eq. 5.7. P4 and P5 in HVC receive synaptic inputs 

regarding S from P3, and send them back to the superficial layer of Vl by the 

feedback neural connection. 

We think that our detailed neural circuit model is compatible with anatom-

ical knowledge of the cerebral cortex (see for example Houser, Vaughn, Hendry, 

Jones & Peters, 1984; Parnavelas, 1984). However, it might be necessary to 

interpose interneurons between the feedback connections and the inhibitory 

interneurons in the upper layer. 

One can see that Vl and HVC execute essentially the same computation 

while using very similar hardware. Although we explained the hierarchical 

neural network model as a model of Vl and HVC, the same model can be 

applied to any two visual areas which are arranged hierarchically (e.g. MT 

and MST). A multi-layer hierarchical structure is constructed by cascading 

several numbers of the unit network shown in Fig. 5 .. 2. Fig. 4 .. 2 contains 

several of these multi-layer hierarchical structures. 

5.3 Examples of approximate inverse-optics operations 

In our theory, existence of approximated inverse optics is essential. In this 
section we give several examples of the inverse-optics operations. 

5.3.1 Detection of intensity discontinuity 

For detecting intensity discontinuity, the hierarchical structure consisting of 

the following three layers is important; 4C/3, the interblobs in Vl and the in-

terstripes in V2. It is assumed that these three layers represent△ G*I, L, and 
L, respectively. The first and the third representations correspond to the in-

tensity process and the line process in the coupled MRF, respectively. L, which 
is the intensity discontinuity, is represented by simple cells (with polarity) and 
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complex cells (without polarity), which are different in preferred orientation. 

L corresponds to zero-crossing obtained by Laplacian Gaussian convolution. 
It doe~not correspond exactly to physical edges. The forward computation 

from L to L could be performed as follows: The neuron in the second layer 

⑪) is excited by the neuron which has similar preferred orientations, but the 
center of the receptive field is displaced along the preferred orientation. Si-

multaneously, it is inhibited by the neuron whose center of the receptive field 

is displaced perpendicularly to the preferred orientation regardless of the pre-

ferred orientation. Such an operation realizes an inverse model of optics, which 

takes into account the a priori knowledge about physical discontinuity in the 

3-D world, that is "continuity of discontinuity". 

5.3.2 Derivation of velocity field 

Kersten, O'Toole, Sereno, Knil and Anderson (1987) trained a neural network 

model to solve the aperture problem in motion perception. Wang, Mathur and 

Koch (1989) proposed a biologically realistic neural network model for motion 

perception. In these studies, candidates of approximated inverse optics can be 

found. 

In our model, velocity computation should be done through the connections 

from 4B in Vl to MT. We explain only feedforward calculation, that is, the 

inverse optics operation. The optimal direction of motion and the center of the 

receptive field of the neuron in 4B are denoted by </>k and (x, y), respectively . 
.L The velocity component along the optimal direction is vxy伍）• Then, the 

forward computation to obtain a rough estimation of the true velocity V at 

each position (x, y) is done with the following equation: 

Vxy伍）=I:I: 哨(<pk)COS (<pk -<p) (5.8) 
(i,j)Ec k 

Here, Vxy位） is a component of the estimated velocity along the direction cp. 
The first summation of the right side is summation of outputs of all the neurons 

inside the neighborhood c of the point (x, y). We can calculate a rough estimate 

of the true velocity vectorvヽhichis somewhat independent of the local gray 

level only by this feedforward calculation. 

5.3.3 Estimation of spectral reflectance 

The surface spectral reflectance is computed through the hierarchical structure 

consisting of blobs in Vl, thin stripes in V2, and V4. Hurlbert & Poggio (1988) 
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computed the inverse transformation (Moore-Penrose pseudoinverse) from the 

image intensity to the surface reflectance. It appeared that the filter consists 

of a small excitatory center with a large inhibitory surround. The filter is very 

similar to the receptive field found in V 4, the spatial feature of which is the 

large silent suppressive surround (Desimone, Schein, Moran & Ungerleider, 

1985). The surround spectral property is the same as the excitatory center. In 

general, the surface spectral reflectance is piecewise constant, while the source 

illumination intensity changes gradually over the surface. Therefore, one of 

the functions of the large surround is to suppress the effect of the illumination. 

5.3.4 Stereoscopic matching and determination of the disparity 

The correspondence problem must be solved to calculate the stereo dispar-

ity. The possible forward calculation is Marr-Poggio's second algorithm which 

is a kind of one-shot algorithm (Marr & Poggio, 1979). It solves the corre-

spondence between left and right images based on the zero-crossing (Marr & 

Hildreth, 1980) under the smoothness constraint of the depth of the surface. 

This computation would be done between interblobs in Vl and thick stripes 

in V2. In this algorithm, the ambiguity of correspondence is reduced through 

a coarse-to-fine processing cycle. 

Recently, some psychological evidence has been obtained. Some evidence 

supports the algorithm, and some does not. Mitchison (1988) showed the 

evidence that the coarse-scale features guide the choice of a particular set of 

correspondence. Some psychophysical experiments suggest that the centroids, 

peaks, and troughs of the activity pattern resulting from the convolution of the 

image with the receptive fields of visual neurons, are also used as primitives 

other than the zero-crossings (Nishihara, 1988; Daugman, 1988; Biilthoff & 

Mallot, 1987, 1988; Legge & Gu, 1989). Thus, considering these psychophysical 

experiments, the following regularization functional proposed by Poggio, Torre 

and Koch (1985) may be an appropriate choice. 

jH△ G * (I(O, x, y) -I(l, x + sd(x, y), y))ド+,¥(▽ sd)2}dxdy (5.9) 
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6. Shape from shading: a model of monocular depth 
perception 

6.1 Local shading analysis by Pentland 

"Shape from Shading" in computer vision (e.g., Horn, 1975; Horn & Brooks, 

1989), which is used to recover the 3-D shapes of objects from the intensity of 

2-D image data, is equivalent to one element of "monocular depth perception" 

in human vision. However, it is not apparent how humans recover 3-D shape 

information. In this section, we discuss this problem at the three levels of 

explanation proposed by Marr (1982): computational theory, representation 

and algorithm, and hardware implementation. 

When constructing a model of perceiving shape from shading, represen-

tation of the model's input and output is very important. In human vision, 

looking into a slanting flat plane from a window causes the shape perception of 

a front parallel plane. Lighting condition variations do not effect the percep-

tion of shape from shading (see Fig. 6 .. 1, for example). Therefore, it is quite 

appropriate to use the derivatives of image intensity for the input representa-

tion rather than the image intensity itself. On the other hand, we choose as the 

output the surface orientation represented by slant 0 and tilt <p whose viewing 

direction is parallel to the z-axis (see Fig. 6 .. 2). Therefore, from the point 

of view of these representations, the "Local Shading Analysis method" (Pent-

land, 1984, 1986) is well-suited to a model of perceiving shape from shading 

in human vision. 

The "Local Shading Analysis method" is an approximated scheme, which is 

based on three assumptions: (1) the surface has Lambertian umbilic points and 

relatively low slant value [surface attribute assumption], (2) the z-component 

of the illuminant direction is relatively large [illuminant direction assumption], 

(3) the surface curvature;;, is common throughout the region [surface curvature 

assumption]. Under these assumptions, the tilt <p becomes the image direction 

in which the second derivative of image intensity d2 I is the greatest and the 

slant 0 is approximated as shown in eq. 6.1. Here, the surface curvature ;;, is 

determined by applying the constraint that the resulting slant 0 must satisfy 

the inequality O~cos 0~l. 

0 = cos―1 { K-(炉I/II —足）ー1/2} (6.1) 

However, because the algorithm of the "Local Shading Analysis method" works 

only under the assumptions described above, we believe that this method can 

not fully account for human monocular depth perception in the real world. 
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Figure 6 .. 2: Representation of surface orientation using slant 0 and tilt cp 
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To solve this problem, we used the forward and inverse models of image gen-

eration proposed in the previous section, because the forward model R (optics) 

can compensate for the shortcomings of the inverse model尼 (approximated

inverse optics) like the "Local Shading Analysis method". 

6.2 Algorithm and neural network model 

Based on the forward and inverse models of image generation, we constructed a 

detailed model of perceiving shape from shading. Practically, the perception of 

shape from shading requires two visual calculations that respectively estimate 

the surface orientation N and the illuminant direction 11 (see Pentland, 1982 

for example). In this section, assuming that the illuminant direction is known, 

we propose an algorithm that estimates the surface orientation N (represented 

by slant 0 and tilt¢). 

At the start, the first and second derivatives of the image, along with var-

ious directions, are calculated from the image data impinging on the retina. 

Then, the local surface orientation N is calculated from these derivatives. 

Fig. 6 .. 3 shows the fundamental computational model of the hierarchical struc-

ture composed of the primary visual cortex and the higher visual cortex (V3). 

In this model, the first and second derivatives of the image intensity are repre-

sented at the primary visual cortex and the surface orientation N is represented 

at the higher visual cortex. 

Here we define N as an intermediate representation which is between the 

higher-level representation N and the image I. The feedforward conn~ction 
from the retina to the primary visual cortex provides the calculation of N1 and 

N2. N1 is composed of directions刀iand the first derivative of the image dl 

along with the directions T/i as 
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凡iscomposed of directions 7Ji and the second derivative of the image d勺

along with the directions 7]i as 
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Figure 6 .. 3: Fundamental computational model of the hierarchical structure 

for perceiving shape from shading. 
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Here,'TJn+i ='T/i + 1r and'T/i (i ::; n) satisfies O~'T/i く 7r. R内andRf2 are the 
approximated inverses that respectively calculate dI and J2 I as 

Rf1 

碍

I:G(c, び）8/fJx'G(x', y'+ c, <I), 
( 

I:G(戸）が/8x'2G(x',が十 E,<I). 
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N(t) = (1, 0, ¢>). 
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Here, G(x,a-) = (21rび2)(-1/2)exp(-x2/2a-2)and G(x,y,a-) = (21ra-2)(-1)exp(-(:i占＋

炉）／幻）. (,') d. x , y is the coor mate system after a rotational transformation 

through angle'r/i in the image plane, and a-is the standard deviation of the 

Gaussian function. The approximated inverse models R名 ＃ and R12 include 
a "smoothness constraint" because the Gaussian function of these models 

smoothes image I. The Gaussian function has been used as the main ele-

ment of the optimal edge detector in the intensity image (Torre & Poggio, 
1986; Canny, 1986). Eq. 6.4 corresponds to the odd symmetrical receptive 

field of a simple cell and eq. 6.5 corresponds to the even symmetrical receptive 

field of a simple cell in the primary visual cortex. Fig. 6 . .4 shows the filter 

shapes of R訂， R各．
Next, we describe an algorithm in which the higher visual cortex interacts 

with the primary visual cortex. Since surface orientation N is composed of 

slant 0 and tilt </>, it is equivalent to a vector with a radius of unit length in a 

spherical coordinate (see Fig. 6 .. 2) : 

(6.6) 

Slant 0 satisfies O :S 0 < 7r /2, tilt ef> satisfies O :S¢> < 27r and t represents the 

time from the beginning of the estimation. 

We explain how to estimate the surface orientation N in the approximated 

calculation Rf. The approximated inverse optics Rf calculates the initial 

surface orientation N(O) from N2 as 

N(O) = Rf(凡）． (6.7) 

This calculation by the network model is realized between the primary visual 

cortex and the higher visual cortex (see Fig. 6 .. 5). 2n neurons exist at the unit 

of the higher visual cortex, and the population coding of the activation of these 

neurons represents surface slant 0 and tilt¢> (see Fig. 6 .. 6). In these figures, 

the activation level of the i-th excited neuron 0i is determined by the second 

derivative of the image d2 I(r;i), and the location of the excited neuron <I>i is 
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N = (1, e, </J) 

N2 (d1) ¥⑪／◎ ◎ • • • • 

N1 (d') m R ⑧ • • • • 

① R ⑧ • • • • 

Figure 6 .. 5: Network model between the primary visual cortex and the higher 

visual cortex. The gray level of each neuron at the higher visual cortex repre-

sents the activation level. 
し
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Ni+l 

Ni 

magnitude ei : activation level of i-th excited neuron 
X 

direction屯： location of i-th excited neuron 

z
 

(1, 0, </J) 〇:slant 

</):tilt 

Figure 6 .. 6: Population coding of the activation of the neurons at the higher 

visual cortex. Broken thick line shows the summation of vector Ni and solid 

thick line shows the normalized summation of vector Ni・
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determined by the information about the boundary given by the occluding 

contour or self-shadow and the first derivative of the image dl (1Ji). 

The value 0i is calculated by using the "Local Shading Analysis method" 

as 

0i cos―l{(min ld2 J(TJi)l/ld2 J(TJi)l)l/3} 

(i=l,2,・・・,n). 

(6.8) 

Here, min I a2 I (T/i) I is the minimum of I a2 I (T/i) I along with the direction T/i 
in the image plane. Eq. 6.8 is an approximated calculation of the equation 

COS―l (l(P入z。"')/d?I(TJi)j113) based on the assumption that the surface has Lam-
bertian umbilic points and the surface curvature "'is common throughout the 

region. Here, p is the albedo of the surface, 入isthe intensity of the illuminant, 

and z。isthe z-component of the illuminant direction. 

The value屯 isambiguous depending on the surface type (convex or con-

cave surface): It is either T/i or T/i + 1r. The ambiguity is resolved using infor-
mation about the boundary caused by the occluding contour or self-shadow 

and about the sign of dI(r,i). We first choose the value屯 inthe neighborhood 

of the boundary caused by the occluding contour or self-shadow that satisfies 

V·e(屯） ~0. Here, V is a vector normal to the boundary from the lighted 

towards the shadowed side in the image plane. e(<I>i) is a unit vector with the 

direction屯. The value屯 hasan ambiguity with 1r change at the point of 

the depth extremum, which could be estimated from the intensities at the two 

occlusion points (Todd & Reichel, 1989). Then, the value屯 ischecked by 

both the real data and the estimated data of the sign of dI (r,i). The algorithm 

utilizes the fact that general objects have convex surfaces in the neighborhood 

of the occluding contour in the real world and that the sign of dl (T/i) depends 

on the surface typ~: convex surface or concave (Pentland, 1986). Therefore, 

this model can estimate the surface orientation of arbitrary smooth objects 

with convex and concave surfaces. 

Next, the initial surface orientation N(O) is estimated by applying the 

population coding. In rectangular coordinates, the activation level of the i-th 

excited neuron 0i and the location of the excited neuron屯 arerepresented 

by a vector Ni (see Fig 6 .. 6) : 

Ni = (:~; : ; : ~:) . (6.9) 

Therefore, the initial surface orientation N(O) corresponds to population vector 
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of Ni vectors (i = 1, 2, ・ ・ ・, n) as 

n 

N(O) = n―i/2 I: Ni 
i=l 

(6.10) 

Now, following this initial estimation N(O), the model starts the relaxation 

calculation as 

dN(t)/dt = Rf {N2 -R2(N)} -fJU(N)/fJN (6.11) 

The forward moりelcalculates凡(N)from the estimated surface orientation 
＃＾  N(t), and error N2-R2(N) is calculated. Then凡{N2 -R2 (N)} is calculated 

by the inverse model Rf, and is sent to the higher visual cortex. The second 

term of eq. 6.11 is caused by the internal model U(N). In this case, we use 

the membrane potential as the internal model energy U(N). 

H ere we assume that the unit vector of the illummant direct10n 1s x (s,Ys,zs) 
and that the surface type is Lambertian. Therefore, the forward model R2 cal-

culates the estimation of dl(T/ふd2I (T/i) using the equation I = x s sin 0 cos <p + 
Ys sin 0 sin <p + Zs cos 0 and the filters R各， Rf2-

6.3 Simulation results 

Using the above algorithm, we estimated the surface orientation of the profile 

of a sphere and an ellipsoid from their intensity images. The images have 8-bit 

resolution in the gray level and their size is 512x512 pixels. The radius of the 

sphere in the images is about 125 pixels. The long-axis length of the ellipsoid 

parallel to the viewing direction is 250 pixels and its short-axis length is 125 

pixels. The standard deviation of the two filters R右，Rf2is 15 pixels. The 

coefficient of each term of the relaxation calculation, as shown in eq. 6.11, is 

0.2. vVe judge that the calculation has converged when the correction factor 

of slant 0 is less than 0.02 radians. 

Fig. 6 .. 7 shows the images of the sphere for four illumination conditions and 

the estimated surface normals of the horizontal profile of the sphere. Similarly, 

Fig. 6 .. 8 shows the case of the ellipsoid. Each curved line at the middle and 

bottom of the images is a center part of the profile of the true surface shape, 

and the short lines represent the estimated surface normals. The reason why 

the part near the boundary is not reconstructed is that the convolution of the 

image with R百orR各cannot adequately be done when these filters intersect 

with the boundary. The middle of each image shows the first estimated surface 

normals at t = 0 and the bottom of each image shows the final estimated 
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surface normals when the calculation has converged. Each numeral in Fig. 6 .. 7 

and Fig. 6 .. 8 represents the number of iterations. The illuminant direction v 

is defined under the assumption that the x-axis is parallel to the horizontal 

direction of the image and the y-axis is parallel to the vertical. 

Fig. 6 .. 7 (c),(d) and Fig. 6 .. 8 (c),(d) do not satisfy the "illuminant direction 

assumption" because the z-component of the illuminant direction in the images 

is too small. And the surface curvature K in the images of Fig. 6 .. 8 does not 

satisfy the "surface curvature assumption". However, surface normals in all 

these cases could be recovered to reasonable accuracy within 10 iterations. 

In our model, the boundary caused by the occluding contour or self-shadow 
plays a very important role. This is because the boundary not only determines 

the area where the surface orientation is estimated by this model but also 

resolves the problem of tilt ambiguity which is indispensable for the estimation 

of surface orientation. 

Next, we discuss the possible implementation of hardware between the 

primary and higher visual cortices. Strictly speaking, from the point of view 

of hardware implementation, it is not appropriate to use the "Local Shading 

Analysis method" as the calculation of the approximated inverse optics Rf. 

However, since Eq. 6.8 is almost equivalent to a sigmoid function, it is expected 

that Rf can readily be implemented by feedforward neural networks such as 

multi-layer perceptrons. How the optics R2 is implemented depends on how 

the illuminant direction is estimated and represented. If these problems can 
be solved, the interaction between the surface orientation and the illuminant 

direction is simply represented by the inner product when the surface type 

is Lambertian. The differential of the estimated intensity dl, a2 I, can be 

realized by a lateral connection between neurons. Also, it is possible that 

the approximated inverse optics R# and the "smoothness constraint" can be 

learned in the neural network (see Lehky & Sejnowski, 1989 for example). 
Furthermore, the local parallel and hierarchical model of the visual world 

based on this computational model can well explain psychological examples 

of shape from shading (Ramachandran, 1988; Todd & Reichel, 1989): the 

inversion of convex and concave surfaces, the effect of subjective contours, or-

dinary structures of surfaces. In particular, we regard the interaction between 

V3 and V4 as important in perceiving shape from shading, because we believe 

that monocular depth is represented in V3, and the location of the light-source 

and 3-D locations of objects are represented in V4 (see section 3). Although 

we do not have decisive physiological support for our neural network model 

in V3, the small number of iteration by our model (typically less than 10) 
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strongly supports our model. 

Some of the simulation results in this section have been reported in pre-

liminary form (Hayakawa, Inui & Kawato, 1991). 

7. Computational theory and neural network model 
for the brightness illusion 

In this section, we will develop a specific computational theory and a concrete 

neural network model for brightness illusion based on our general framework 

developed in the previous sections. In recent studies of computational vision, 

it is believed that the main role of vision is to reconstruct a three-dimensional 

structure from a two-dimensional image. The purpose of this section is twofold: 

one is to model the early visual processes from the standpoint of visual recon-

struction. The other is to model two important functions: detection of inten-

sity discontinuity and filling-in. Some of the results in this chapter have been 

reported in preliminary articles (Inui, Kawato & Hongo, 1990, Inui, Hongo & 
Kawato, 1990, Hongo, Inui & Kawato, 1990). 

7 .1 Mach bands 

In this section, we propose a new model for the brightness illusion of Mach 

bands. We perceive a white band and a dark band clearly near the boundary 

between a brightly illuminated region and a dimly illuminated region of the 

visual field (Fiorentini, 1972). Recently, new properties for these phenomena 

are reported as follows. 

1. Mach bands are not visible on ramps whose width is less than 4 minutes 

of arc (Ross, Morrone & Burr, 1989). 

2. Mach bands disappear when a high contrast line is presented in the ramp 

region (Ratliff, 1984). 

3. The dark and light bands show different properties (e.g. Shipley & Wier, 

1972). 

These properties are very important. If we adopt a simple and popular 

model of the second derivative of intensity (Hartline & Ratliff, 1957), the 

clearest Mach band should be seen in the case of a step pattern. However, 

we cannot see it in reality. In this respect, the Chevreul illusion is different 

from the Mach band (see also Ross, Holt & Johnstone, 1981). In fact, at 
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least three panels are required for the Chevreul illusion (Bekesy, 1968). These 

properties imply that we detect the intensity discontinuity by a line process 

and that Mach bands are inhibited by activation of the line process. In the 

following section, we propose a two-layered neural network model based on 

this fundamental idea. 

7.1.1 Computational theory of Mach band illusion 

We propose a computational theory of the illusion from the standpoint of visual 

reconstruction. In the theory, it is assumed that an approximate intensity pro-

file is reconstructed from a given piece of sparse intensity data by minimizing 

an energy function. The energy function which we propose is as follows: 

E = En+入比+,恥

勘=j {f(x) -d(x)}2dx 

恥=j {1-l(x)}{町 (x)/紀 }2dx

恥=j l(x){l -l(x)}dx + (c/,) j l(x)dx, (7.1) 

where f (x) represents the reconstructed intensity profile. d(x) represents a 

given piece of data of the contrast. In this model d(x) is given around the 

edge. l(x) represents the output of a neuron in the line process. 

The first equation is the data fitting term of the energy function. The 

second equation is the interpolation term. The second derivative term of this 

equation determines the smoothness of interpolation. In this case, it is a bend-

ing energy. In other words, it is the curvature of an interpolated surface. This 

energy is often called the thin plate potential. Crimson (1981) adopted the 

thin plate potential energy as a constraint function in the visual surface re-

construction. He pointed out the importance of the discontinuity detection 

because this smoothness constraint caused the warping and ripping of the re-

constructed surface (Gibbs phenomena), which is undesirable (Crimson, 1982). 

If the bending energy is large enough, the output of the line process neuron 

l(x) becomes 1, and the network stops interpolating smoothly. As a result, 

surface discontinuity occurs. The third equation determines the behavior of 

l (x). The first term allows the value of l (x) to be either 1 or 0. The second 

term is a penalty term, which prohibits l(x) from being 1 everywhere. 入de-

termines the balance between the data fitting term and the constraint term. 
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入isthe regularization parameter determined by the signal-to-noise ratio (see 

Introduction). In related psychophysical experiments, 入becomessmaller if the 

stimulus contrast is high or the sensitivity is high. 

7.1.2 Structure of the neural network 

In this section, we propose the neural network model which minimizes the 

energy function described above. Figure 7 .. 1 shows a schematic diagram of 

the network. The circles show luminance units which have a nonlinear input-

output function. The bars show the line detectors which represent discontinu-

ities of the luminance units'states. The arrows show the interaction between 

a luminance unit and other luminance units or between a line detector and the 

luminance units. An excited line detector inhibits all interactions across it. 

Time evolution of the membrane potential of an intensity neuron is described 

by the equation: 

dC(x)/dt = -8E/8J(x) (7.2) 

Here, f(x) represents the output of a neuron, and C(x) represents the mem-

brane potential of a neuron. The energy function defined above is substituted 

into this equation. Then we obtain: 

dC(x)/dt 

f(x) 

-2{J(x) -d(x)} -2入{1-l(x)}{84f(x)/8x4} 

f 
C(xt 

maxr,1 __ヽ~, r,,, (7.3) 

For the minimization, the fourth derivative of f (x) must be calculated. The 

second equation, called the "Naka-Rushton equation", determines the input-

output relationship of the neuron. In this case, C(x) is identified with contrast 

of the visual stimulus. This function has been shown to provide a good fit 

to the contrast response functions of the visual cortical neurons (Albrecht & 

Hamilton, 1982, see also Sclar, Maunsell & Lennie, 1990). d(x) represents the 

given data of the contrast. In this model, d(x) is given around the edge, while 

l(x) represents the output of a neuron in the line process. 

du(x)/dt 

l(X) 

-aE/al(x) 

入｛町(x)/紀 }2一1{1-2/(x)} -c 

1/ {1 + e―2入u(x)}
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Figure 7 .. 1: Schematic diagram of the network for brightness illusion. 
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This equation describes the change in the membrane potential of a line process 

neuron. u(x) is the membrane potential. The second equation determines the 

input-output relationship. 
From the coefficient of the differential equations 7.4, the synaptic weight 

coefficients between neurons are determined. Figure 7 .. 2 shows their values. 

Although Eqs. 7.3 and 7.4 are written with a continuous expression of space x, 

Fig. 7 .. 2 is displayed with a spatially discrete representation of these equations 

with a number of neurons. In this procedure, we make x discrete and use 

the central difference scheme to approximate the fourth and second spatial 

derivatives. Then the connection weights between neurons are derived from 

these schemes to make x discrete. 

(a) shows the interaction between luminance units. The output of the 

luminance unit indexed by n excites itself. The nearest-neighboring luminance 

units indexed by n -1 and n + 1 have inhibitory connections, and the next-

nearest neighbors indexed by n -2 and n + 2 have excitatory connections 

on the unit n. (b) shows a functional form of the Gabor filter. (c) shows 

the interactions between a line detector unit and the luminance units. Two 

hidden units indexed by h and h + 1 are shown in this figure. The luminance 

units n -1 and n + 1 have excitatory connections, and n has an inhibitory 

connection with h. The hidden unit h + 1 also has the same connections from 

n, n + 1 and n + 2. The summation of outputs from h and h + 1 excites the 

line detector unit m. (d) shows a functional form of the DOG (difference of 

Gaussian) filter. It appears that the connections between the intensity process 
are similar to the Gabor function (compare (a) and (b) of Fig. 7 .. 2). The 

interaction between the line detector unit and the luminance unit is similar to 

DOG or the Laplacian Gaussian. 

In general, the Laplacian operation can be regarded as one example of the 

inverse optics, because it is useful for detecting edges from a two-dimensional 

image. On the other hand, inhibition from the line process to the intensity 

processes can, in a broad sense, be considered one example of the optics, 

because two sides of an edge are different regions if the edge exists. Therefore, 

this two-layered network simultaneously realizes the optical and inverse optical 

operations for visual reconstruction. 

7.1.3 Simulation results 

Figure 7 .. 3 shows the experimental data given by Lowry and De Palma (1961). 

The dashed line shows the stimulus intensity profile. Open circles show the 
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Figure 7 .. 2: (a) Synaptic interactions among intensity units. The numbers in 

the figure indicate the synaptic weights. (b) Shape of the Gabor filter. (c) 

Synaptic interactions between intensity, hidden and line-process units. (d) 

Shape of the difference of Gaussian. 
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subjective brightness. 

Figure 7 .. 4 shows the result of the simulation. The values of the parameters 

are shown in the figure caption. The output of the network is very close to the 

experimental data by Lowrey & De Palma (1961). . 

Figure 7 .. 5 shows the experimental data given by Fiorentini and Radici 

(1957). The dashed line shows the stimulus intensity profile. The solid line 

shows the subjective brightness. 

Figure 7 .. 6 shows the result of the simulation. The values of the parameters 

of the network are also described in the figure caption. They are the same as 

those used in the simulation of the experiment by Lowrey and De Palma (1961), 

except for入. As入determinesthe signal-to-noise-ratio, it is reasonable that 

入ischanged for different experimental conditions and subjects. The output 

of the network is also very close to the experimental data by Fiorentini and 

Radici (1957). 
The performance of our two-layered neural network closely approximates 

the psychophysical data. In this simulation, the data given to the network 

are contrast. If the data are binocular disparity, the network reconstructs 

the depth of the surface as in the case of brightness. However, it has been 

reported that we cannot see Mach bands in the depth domain for random-dot 

stereograms (Brookes & Stevens, 1989). If this is the case, we should adopt 

the membrane-type potential (second derivative) as the smoothness term of 

the energy function for computation of disparity. 

Another line of evidence also suggests a membrane-type potential, even for 

luminance reconstruction. It is well known that the second derivatives of the 

intensity profile are calculated in the early process, probably in the retina. 

Therefore, we are now examining a new neural network model. In this new 

model, it is assumed that there are two kinds of visual channels: one transmits 

the second derivative of the intensity, and the other transmits the absolute 

level of the intensity. We call the latter channel a "luminance unit". We adopt 

the membrane-type potential as the smoothness constraint for the network. 

For energy minimization, the second derivative of the data must be calculated. 

This second derivative is different from the spatial derivative executed in the 

retina. The network executes filling-in and detection of intensity discontinuity, 

as in the previous network. The difference between the old and new model is 

the interpolation function. We are currently examining the performance of the 

new network. The brightness computation which we mentioned before will be 

reproduced by the new model. 
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Figure 7 .. 3: Subjective brightness distribution (open circle) and luminance 

profile (dashed line). (From Lowry and De Palma, 1961). 
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Figure 7 .. 4: Simulation results for the data by Lowry and De Palma (1961). 

Parameter values used in this simulation are: 入=1.4,Cso=O.l, n(+)=3.4, 

n(-)=1.7. 
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Figure 7 .. 5: Subjective brightness distribution (solid line) and luminance pro-
file (dashed line). (From Fiorentini and Radici, 1957). 
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Figure 7 .. 6: Simulation results for the data by Fiorentini and Radici (1957). 

Parameter values used in this simulation are the same as that of Lowry and 
De Palma's data except for入；入=2.8. 
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7.2 Craik-O'Brien-Cornsweet effect 

7.2.1 Phenomenon 

A two-dimensional luminance pattern which is uniform except for a narrow dif-

ferential region of the luminance is perceived as a step luminance pattern (see 

Fig. 7 .. 7). This illusion is called the Craik-O'Brien-Cornsweet effect (COCE). 

Fig. 7 .. 7 shows a one-dimensional slice across a two-dimensional luminance 

profile which induces COCE (a). The left side luminances are equal to those 

on the right. This profile looks like a luminance step (b). Burr (1987) reported 

that the COCE occurs only when the contrast is very low. 

In his experiment, a pattern which has two narrow differential regions was 

used (see Fig. 7 .. 8). When the illusion typically occurs, one cycle of a square 

wave with period T is perceived. The patterns were generated by micro-

computer and displayed on the face of an oscilloscope at 100 frames/sec, 1000 

lines/frame. The oscilloscope face was surrounded by a 1 m square screen 

uniformly floodlighted to 400 cd/m叫thesame mean luminance as the oscil-

loscope. One cycle of the grating was displayed for all conditions. Spatial 

frequency was varied by varying viewing distance, from 0.22 to 200 m, using 

mirrors and reverse binoculars where necessary. 

Observers were required to match the brightness of the central bar of the 

waveform with that of the square wave. Either the COCE wave form or the 

square wave could be displayed on the screen at the observer's request. Ob-

servers looked alternately at the two stimuli, and adjusted the contrast of the 

square wave until the brightness of its central bar was comparable to that of 

the COCE stimulus. • Judgements were made on the overall brightness of the 
bar, ignoring the regions adjacent to the border: the rest of the waveform 

appeared uniformly bright. Five measurements were made for each condition, 

and the average reported (Burr, 1987). 

Fig. 7 .. 9 shows the apparent brightness produced by the COCE, as a func-

tion of stimulus contrast (Burr, 1987). The fundamental spatial frequency 

21r /T of the waveform is 0.25 (solid circles) and 2 (open circles) c/ deg. The 

broken line indicates the equivalent of the two stimuli. The effect of contrast 

is brought out in this figure, which reports brightness matches as a function 

of the peak-to-peak contrast of the COCE stimulus. 

The measurements were made with the fundamental spatial frequency of 

0.25 c/ deg and 2 c/ deg. At low contrasts, (up to about 0.06) the matched 

contrast for brightness is similar to that of the stimulus. At higher contrasts, 

the matched contrast continues to increase at a lower rate up to a contrast of 
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~ 
(a) 

(b) 

Figure 7 .. 7: (a) A one-dimensional slice across a two-dimensional COCE lu-

minance profile. The left side luminances are equal to those on the right. (b) 

This profile looks like a luminance step. 
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Figure 7 .. 8: A one-dimensional slice of the COCE waveform which is used in 

the Burr measurement. Typically, when the illusion occurs, one cycle of a 

square wave whose period is T is perceived. 
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Figure 7 .. 9: The apparent brightness produced by the COCE, as a function of 
stimulus contrast (Burr, 1987). 
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about 0.2, whereupon it decreases. 

7.2.2 Simulation results 

In this section we show the simulation results of COCE illusion. Here, we 
emphasize that the simulation was conducted using essentially the same neural 

network model used in the simulation of the Mach bands. Thus, our model is 

coherent in reproducing both the Mach bands and the COCE illusion. 

We used a luminance pattern which has two differential regions accord加ng

to the experiment by Burr (1987). If the illusion does occur, the central reg10n 
will be perceived to be darker than the left and right regions. The thirty-two 

intensity units and the thirty-one line detectors placed between the intensity 

units are used in this simulation. The following parameter values are used: 

入=2.8,1=104 and c=7.2x 10-5. 

The contrast under which this illusion is perceived is less than 10% of 

that under which the Mach band is perceived. When the contrast is low, the 
input-output characteristic function of the neuron can be approximated by the 

linear function. Thus, the nonlinear input-output function is not used in this 

simulation. 
The initial values of the intensity units are represented by the solid line in 

Fig. 7 .. 10. The data around the mean luminance are used only as the initial 

values, but the maximum and minimum values which are shown by open circles 

are also used as the continuous input data. 

The results of the simulation are shown in Fig. 7 .. 11. The dashed line shows 

the initial value of each luminance unit, and the circles show the continuous 

input. The solid line shows the simulated brightness perception. When the 

input contrast is small, the COCE occurs (a). On the other hand, when 

the contrast exceeds 6%, the discontinuities on the gentle slope are detected 

and the illusion does not occur (b, c, d). These results agree with Burr's 

measurement. 

Some of the results shown in this subsection have been previously reported 

in preliminary form (Inui, Kawato & Hongo, 1990; Hongo, Inui & Kawato, 
1990). 

7.3 Comparison with other models 

Todorovic (1987) discussed the advantages and disadvantages of different types 

of theoretical attempts to explain the structure of the brightness percept in 
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Figure 7 .. 10: A one-dimensional COCE luminance profile which is used in the 

simulation. The initial value of each luminance unit is shown by the solid line. 

The maximum and minimum contrasts which are shown by open circles are 

given continuously. 
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the COCE. He developed new visual displays related to the COCE and esti-

mated their relevance for theories. He classified theories of the effect into the 

nonisomorphistic, the cognitive, and the mechanistic approaches. 

The guiding idea of nonisomorphistic approach is that the similarity of 

the profiles of neural activities induced by the steps and cusps is sufficient to 

explain the similarity of percepts; it is not necessary to require isomorphism, 

that is, the identity of shapes of spatial distributions of percepts and the 

underlying neural activities. This approach is criticized as being incomplete. 

For example, it can not explain the COCE disappearance, when a luminance 

cusp is embedded into a uniform background (Todorovic, 1987). 

The cognitively oriented approach is founded on the idea: "the source of 

this illusion may be situated at a much higher level, where neural excitation 

patterns are recognized and interpreted". This approach is criticized as in-

adequate based on the idea which we cognitively know that apart from the 

gradients, each region is equiluminant. 

Mechanistic theories are divided into integration theories, which model the 

visual processing stage with standard mathematical operations such as differ-

entiation and integration, and filling-in theories, which stress the processing 

dynamics of interconnected neural networks. The reported variations of the 

COCE support the latter class of theories. 

Cohen and Grossberg (1984) proposed a filling-in theory which uses a phys-

iological framework, invoking the dynamics of neural processing at different 

levels of the visual system. Our model is similar to their idea in its basic con-

cept. However, they did not incorporate any mechanism which explains the 

disappearance of the two kinds of illusions under high-contrast condition. Our 

model is coherent in that it explains the Mach bands and COCE with a single 

mechanism. 

Morrone and Burr (1988) proposed the local energy model of feature de-

tection. In the model, images are first filtered by pairs of matched filters, 
one with even-symmetric line-spread functions, the other with odd-symmetric 

line-spread functions. Then, the outputs of the two filters are squared and 

summed to give the square of local energy. Features are signaled by peaks in 

local energy functions. The nature of the features is determined by evaluating 

the linear responses of the two types of operators at the peaks in local energy. 

At the positions where local energy peaks on the step-edge, the response of 

the odd symmetric operator is maximal and the even-symmetric operator zero. 

This is the signal for an edge. On the other hand, when the local energy is 

maximal and the odd-symmetric response is zero, it is the signal for a line. 
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According to the model, we see the Mach bands because at the knee points 

of the trapezoidal pattern, there are peaks of energy where there is a strong 

even-symmetric response (Ross, Morrone & Burr, 1989). Similarly, the COCE 

occurs because at the non-uniform region of the luminance pattern, peaks of 

local energy occur signaling an edge (Burr & Morrone, 1990). In the local 

energy model, the peak values will change linearly with the contrast of the 

pattern, since the model is fundamentally linear. However, this is not the 

case: these two types of illusion appeared nonlinear. As already mentioned in 

the previous sections, the COCE disappears for high contrast with exactly the 

same spatial pattern. Similarly, we found that the Mach band disappears for 

high contrast with exactly the same spatial pattern (Hongo, Kawato & Inui, 
unpublished observation). These disappearance phenomena in the COCE and 

the Mach band can not be explained by the local energy model. 

8. Learning of local, parallel and hierarchical model 

Vl has marked synaptic plasticity as revealed by studies of orientation selective 

cells and the ocular dominance column. HVC seems to have even more synaptic 

plasticity. 

In the model shown in Fig. 4 .. 2, the intrinsic connection, the feedforward 

connection and the feedback connection in this order for the higher visual cor-

tex are more acquired by learning rather than inherently wired. In other words, 

the feedback connection to Vl is essentially genetically determined. This is be-

cause the image generation procedure has common physical properties, while 

a higher-order abstract model of the visual world, such as O in IT, depends 

heavily on the environment of individual organisms. 

Authors and colleagues have been studying learning acquisition of the cou-

pled MRF and recurrent neural networks from examples of images (Kawato, 

Ikeda & Miyake, 1988, Kawato, Ikeda, Sonehara, Inui & Miyake, 1989). From 
these studies, we found that if we provide teaching signals both for S and J, 
the image model can be acquired both for synthetic images and natural im-

ages (Hongo, Kawato, Inui & Miyake, 1989) irrespective of MRF or recurrent 

networks (Kawato, Ikeda, Sonehara, Inui & Miyake, 1989). 
However, while providing teaching signals about S might be important 

for some engineering applications, it is completely inappropriate as a model of 

learning in the brain. The reason is that the assumption of the existence of the 

teaching signal for S is equivalent to the assumption of some other brain area 

which can obtain a correct estimation of S without the "visual" cortical areas. 
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It is well conceivable that sensory modalities other than vision, navigation or 
object manipulation help the visual areas to acquire a good estimate of S. 

However, if these other means were able to obtain a rigorous estimate of S, 

there is no reason for existence of the visual system. Consequently, it is very 

important to examine whether or not the image model can be acquired when 

only information about I is provided. 
We experimentally found that it is indeed possible (Okamoto & Kawato, 

1989 unpublished observation; Ohtsuki & Kawato, 1991). First, we generated 

an image (I, S) from the coupled MRF with specific energy parameters. Then 

we gave only I to another MRF with different energy parameters. We used 

the learning method which we developed for the coupled MRF based on the 

maximal likelihood criterion (Kawato, Ikeda & Miyake, 1988). As a natural 

modification of our learning rule for the stochastic model to a deterministic 

model, we then propose a cross-covariance learning rule for visual cortical 

areas. 

The neural networks shown by broken curves in Fig. 5 .. 2 which realize 

-8U(S)/8S and -8V/8S contain multiple synapses and interneurons, al-
though they are not shown. By changing the strength of synaptic weights 

included in this circuit, we can modify -8U(S)/8S and -8V/8S, and conse-
quently modify probabilities P associated with internal models of the visual 

world. 

We now consider one synapse included in this circuit. Let us denote short-

time average of the firing frequency of the presynaptic fiber by J(t). v(t) 

denotes local postsynaptic potential. w represents the synaptic weight. The 

change of w is proportional to the difference between the covariance of f and 
v while the visual cortex changes its state according to eqs. 5.4, 5.5, 5.6 and 

5. 7 and the covariance when the visual input faded out, and the first and the 

second terms of eq. 5.5 do not exist. 

_ input - J econst 

△ w=(f-f)(v一万） 一(f-f)(v一万） ， (8.1) 

here the overline is time average. The first term is calculated by time average 

while the calculation is done as shown in Fig. 5 .. 2 for 100 or 200 msec after a 

new image I impinges on the retina because of, for example, saccade. Then, 
the visual input system adapts and the calculation of the first term and the 

second term of eq. 5.5 is not carried out. Accordingly, independent of the 

image data impinging on the retina (although the initial condition is affected), 

the visual cortical areas start to reconstruct the visual world based only on 

forward and inverse models of optics, and internal models of the visual world. 
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While the latter state lasts for 200 to 300 msec, the second term of eq. 8.1 is 

calculated. This learning equation can be regarded as a natural extension of 

our previous learning rule for MRF to the case of a recurrent neural network 

model. This is partly inspired by experimental findings of covariance learn-

ing in the hippocampus (Stanton & Sejnowski, 1989). Mitchison (1989) has 

independently proposed a closely related learning algorithm. 

The most important feature of the cross-covariance learning rule proposed 

above is that the period when the visual input is really conveyed to the vi-

sual cortices alternates quite rapidly (100 to 300 msec) with the period when 

the input is shut down and information processing is done closed within the 

cortex. Several psychological experimental data support this hypothesis (Inui 

& Miyamoto, 1981, Sperling, Budiansky, Spirak & Johnson, 1971). In typical 
eye movement, fixation and saccade alternate. Each fixation period is typically 

250 to 300 msec and the saccade lasts for several tens of milliseconds. It is 
well known that visual input is suppressed during the saccade. Furthermore, 

it recently became clear that the visual information is acquired only for 100 

msec or so after the saccade, and the rest of the duration is not used simply 

for acquiring visual input. That is, from the psychological measurement, the 

visual information about the outer world does not seem to be processed after 

the first 100 msec after the saccade. While the visual input is shut down, 

the visual cortical areas can reconstruct or generate the representation of the 

visual world based on the feedback and feedforward connections between areas 

and the intrinsic connections within areas, as shown in Fig. 5 .. 2. Synaptic 

weights change so that this reconstructed visual world is in good agreement 

with the real visual world according to eq. 8.1. 

9. Discussion 

In this paper we proposed computational and neural network models which 
coherently explain early, middle and high-level visions based on physiological 

and anatomical knowledge of the visual cerebral cortices. Feedforward neural 

connections, feedback neural connections and the intrinsic neural connections 

are assumed to provide models of the approximated inverse of image genera-

tion, the forward models of image generation, and internal models of the visual 

world, respectively. All these connections are topographical and local, so a sin-

gle layer can provide a very local model of the visual world (Markov random 

field model in this sense). However, the brain makes up a global and abstract 

model of the visual world by folding many layers. In the HVC, which is higher 

碧
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than Vl by several levels, the receptive fields of the neurons are much larger 

than those in Vl because of convergence of the feedforward neural connections. 

Consequently, although the intrinsic neural connection in the HVC is still local 

physically on the cortex surface, it provides a global interaction in the visual 

field. This design principle is appealing also from the engineering point of view 

(Hongo, Kawato & Inui, 1991). 
Finally, we discuss visual memory and pattern recognition within the frame-

work given in Fig. 4 .. 2. Even if there is no visual input I, if neurons in some 
HVC are excited, then all areas in Fig. 4 .. 2 are activated because of the feed-

back and feedforward connections between areas. This corresponds to recall 

of imagery. In this sense, the internal model of O in IT can be said to possess 

memorized visual imagery. Rolls (1989a, 1989b) proposed a computational 

and conceptual model of the hippocampus and the visual cortical areas. In 

this model he emphasized the functional significance of feedback connections 

(backprojection in his terminology) in visual pattern recognition. Rolls pro-

posed 7 possible functional roles of this backprojection. We believe that our 

mathematical interpretation of the feedback connections as a model of the 

image generation process is fairly compatible with his interpretations. 

The pattern recognition is equivalent to convergence of all the states of all 

areas in Fig. 4 .. 2 to stable equilibria by interaction with feedforward, feedback 

and intrinsic connections. That is, when all three conditions, feature extrac-

tion from the image data, reconstruction of the image data from memorized 

mental imagery, and prediction by internal model of the visual world, are sat-

isfied for all the description levels from s1 to s14, the total system is said to 

recognize something. The fundamental design principles of the visual cortices 

are parallelism and hierarchy with local connections. The three main parallel 

flows of information (shape, color, motion) avoid a combinatorial explosion of 

different attributes. Feedforward connections make relatively fast relaxation 

possible. Interactions between different areas through feedforward and feed-

back connections guarantee convergence to a consistent solution all over the 

visual cortices. 
It is known that the hippocampus has an important role in recognition 

memory, and several models have already been proposed (McNaughton & 
Morris, 1987, Rolls, 1989a). Recently, it was found that the hippocampus 

has several reciprocal connections between V4, IT, MT, area 7, area 22 (Van 

Rosen, 1982). Area 7 is related to spatial perception, and area 22 is related 

to auditory perception. We assume that hi匹pocampusintegrates the various 

kinds of information into a single episode; visual information for an object is 
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combined with auditory and spatial information which can be cues when it is 

recalled. Integration of this type is called'vertical association'(Wickelgrem, 

1979). When the auditory or spatial information is given, the reciprocal con-

nections work and the signal will go down from the hippocampus to the higher 

visual areas, and in turn, the neurons in the lower level (e.g., V2 and V3) will 

be activated through the reciprocal connections among the visual areas. The 

state of activation of the visual areas corresponds to the image recall. 

In general, feedforward connections calculate the inverse optics (roughly 

speaking, the pseudo-inverse matrix from lower data to the higher-order solu-

tion space), and backward connections calculate optics (higher-order estima-

tion to lower-order data). In other words, they perform hypothesis generation 

and verification respectively. For example, for shape from shading, feedforward 

connections compute the surface orientation roughly from the 2D image by a 

one-shot algorithm (using natural law as a constraint). On the hand hand, 

feedback connections calculate the 2D image from the estimated surface ori-

entation. Through these loops the network estimates the orientation rapidly 

and exactly. 
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