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Abstract 

One of the advantages of the Multi Layered Perceptron (MLP), combined with 

Back Propagation (BP) algorithm, is its capability of learning from examples. 

On the other hand, Memory Based Reasoning (MBR) is also known by its 

learnability from examples, in which method the system memorizes the entire 

set of the examples of known input-output correspondence and interpolates 

them in order to calculate outputs for unknown inputs. Naturally, there arises 

a question whether MLP is a mere variety of MBR where example data are 

compressed to some extent. In this paper, we will show that MLP has an 

additional property, i.e. the capability of acquiring internal representation from 

examples. 

To show this, a five layered perceptron is made to learn the identity 

mapping from the input layer to the output layer. Input vectors are distributed 

on a manifold whose dimension is identical to the number of units in the 

compressed representation of the third layer. In this configuration, we show 

that the network succeeds in acquiring the global nonlinear coordinate system 

which is evidently most suitable for the distribution of the example data. The 

way to make use of the result for some applications is also discussed. 
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Introduction 

There have been various attempts _of applying Multi Layered Perceptron (MLP) 

to information processing problems, such as pattern recognition, image 

compression, speech production, etc. In such applications, MLP can be looked 

upon as an continuous mapping from the input vector to the output vector. 

Since the existence of the solution for arbitrary mapping is guaranteed [2], 

the main problem is how to determine parameters (connection weights and 

thresholds) for respective problems in order to obtain desired input-output 

correspondence. By using such algorithm as Back Propagation (BP), appropriate 

settings of network paremeters can be automatically determined by iterative 

presentation of input-output correspondence examples. This property of learning 

-from-examples is thought to be one of the advantages of MLP, since it can 

lead to programless information processing. However, the same advantage is 

shared by Memory Based Reasoning (MBR), in which method, the system 

memorizes the entire set of the known examples of the input-output 

correspondence and interpolates them to calculate outputs for unknown inputs. 

Of course, the latter method needs substantial storage for complicated problems, 

but the problem of the learning time exists in the case of MLP, instead. Stanfill 

and Waltz [ 4] have shown that the system named MBRtalk using MBR method 

proves at least as efficient as NETtalk [3] which uses MLP for the task of 

telling English pronunciation from spelling. This result implies that MLP might 

be a mere variety of MBR, that is, the mechanism of MLP is just to interpolate 

the known example data rather than to calculate outputs using the rule 

inferred from the examples. Here arises a question, "is MLP a mere variety 

of MLP where example data are compressed to some extent?" The objective 

of this paper is to find an answer to this question. 

On the other hand, there are claims that MLP has the capability of feature 

extraction, or the capability of acquiring the internal representation of the 

inputs. However, in those reports claiming the capability, statistical analysis 

methods (e.g. principal component analysis= PCA) are usually used for finding 

the extracted features or acquired internal representation. Considering that 

the capability of the statistical analysis system to find something out of the 
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data is very powerful, it is rather difficult to declare that the features, or 

the representations have been extracted by the MLP, not by the analysis 

process. Here arises the second question, "is it really possible for MLP to 

acquire the internal representation (or extract the features) from examples? 

What . . 1s internal representation 

Let us imagine the effect of the coordinate transformation on the interpolation. 

Since the interpolation process is greatly influenced by the distance measure 

(definition of norm) of the space where the data are represented, and since 

the distance measure is not preserved (i.e. the ordering of two distances can 

be reversed) even by a linear transformation, the coordinate transformation 

can cause an essential alteration in the interpolation process. In fact, Stanfill 

and Waltz [ 4] lay emphasis on the importance of the data representation for 

getting good performance of the MBR. While the date representation is fixed 

m the case of MBR, it is changeable in the case of MLP, where the coordinate 

transformation is performed by the connection between the input layer and 

the hidden layer whose connection weights are chaged by the BP algorithm 

automatically. Therefore, one candidate for the advantage of MLP over MBR 

is the property of coorindate transformation from the input layer to the hidden 

layer. 

Then, what kind of coordinate transformation is the connection between 

the input layer and the hidden layer supposed to do? To answer this 

question, it is reasonable to consider what kind of interpolation is required. 

In general, the data we want to process have some probabilistic distribution 

1n the coordinate system (of the input layer units) by which they are 

originally represented. Here, let us assume that the data are distributed on 

some lower dimensional manifold in the original space. This assumption may 

seem to be too restrictive. But when we want to do some information 

processing, the input data are usually generated through some physical 

processes. It follows that the data source has some physical mechanism, in 

which case, the input data are distributed around a quite low dimensional 

manifold because any physical process can be expressed in simple equations 
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of real parameters. Now, if the data are tranformed into the the global 

coordinate system which is naturally defined in the manifold on which the 

data are distributed, then we can get the best interpolation for the data because 

the interpolated points naturally fall into the manifold. 

This is illustrated in Fig. 1. In the figure, the data are originally represented 

in the two dimensional space S using the coordinate system (x, y). However, 

by the physical characteristics of the generating system of data, the data points 

distribute on the one dimensional manifold (curved line) M. When we want 

to interpolate between point a and b to find the center point, if we do so 

in the space S using (x,y) coordinate system, what we get will be c', which 

doesn't fall into the original distribution. On the other hand, if we interpolate 

a and b in the manifold M using the single global coordinate axis p of M, 

the resultant point c will be inside the manifold. If the MLP automatically 

transforms the (x, y) representation into p representation, it is reasonable to 
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Fig.1 interpolation in the original space and 1n 

the manifold on which the data distribute 
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say that the system has found the internal representation (=manifold M). 

By using the conventional Principal Component Analysis (PCA), a linear 

subspace of the original space on which the data distribute can be found. 

However, it is not likely that the manifold on which the data are distributed 

happens to be the linear subspace of the original space. In the following 

sections, we will show that the MLP has the capability of finding the global 

coordinate system of the manifold which is not necessarily the linear subspace 

of the original spac. On analyzing the transformation, we just observe the 

firing level of the units, which will prevent the "feature extraction by analyzing 

the network, not by the network itself". 

Network topology 

Bourlard and Kamp [1] have shown that PCA can be executed by the three 

layered hour-glass model. A three layered hour-glass model is a kind of MLP 

of which the input and output layer has the same number of units and the 

hidden layer has fewer. They have shown that if the same data is used for 

input and output in each step for training, the firing level of the hidden layer 

units converge to the principal components or their linear combination of the 

distribution. In this case, a linear projective transformation is executed in 

the connection between the input layer and the hidden layer, and its inverse 

transformation is performed in the connection between the hidden layer and 

the output layer. (See Fig. 2) In order to enable nonlinear coordinate 

transformation, we have added extra hidden layers before and after the single 

hidden layer of the three layered hour-glass model. The resultant five layered 

hour-glass model is shown in Fig.3. The same network model has been used 

for image compression by Katayama. It is guaranteed by Irie and Miyake [2] 

that an arbitrary continuous nonlinear coordinate transformation from the first 

(input) layer to the third layer, and its inverse transformation from the third 

to the fifth (output) layer can be realized by increasing the units of the 

second and the forth layer. Each of the units of the third layer is supposed 

to correspond to the coordinate axis of the manifold on which the input data 

points distribute. 
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Fig.2 Image compression by a 
three layered hour-glass model 
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Fig.3 Five layered hour-glass model 
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Simulation 1 

We fixed the manifold, chose random points from it and used them for the 

learning examples of the hour-glass model. If the firing level of the third 

layer units correspond to the nonlinear coordinates of the manifold after 

learning, we can conclude that the network has acquired the internal 

representation. First, we conducted a simulation for the case of one dimensional 

manifold (a semicircle) in the two dimensional Euclidean space with Cartesian 

coordinate system (x, y) (See Fig. 4). Both the number of the units of the input 

and output layer was set to two, while that of the third layer was set to 

one. The number of units of the second and the forth layer correspond to 

the degree of nonlinearity of the coordinate transformation from input layer 

to the third layer, and the inverse transformation from the third layer to 

the output layer, respectively. As these numbers were not so essential for 

the purpose of the simulation, they were both set to ten. As to the activation 

function, we used sigmoid function only for the units of the second and the 

forth layer, in which layer the nonlinearity is essential for generating arbitrary 
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Fig.4 A semicircle used for the simulation 
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transformations. In the units of other layers, the weighted sum of the inputs 

were directly used for outputs. This was effective also for speed up of the 

simulation. Fifty training examples 

(x=cos0, y=sin0, 0~0盆）．

were randomly chosen from the semicircle 

The data were iteratively presented to the input layer 
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Simulation 2 

We conducted another simulation increasesing the dimension by 1, 1.e. a 

hemisphere in the three dimensional Euclidean space with Cartesian coordinate 

system. In this case, the number of units are 3, 10, 2, 10, 3. The exact topolo邸

of this network is illustrated in Fig. 3. Again, fifty random points were choson 

from the hemisphere (x=cos0sin¢, y=sin0sin¢, z=cos¢, 0鵡~2冗， 0<¢匂 2). This time, 

we had to devise a scheme to illustrate the resultant relationship between 

the four parameters : 0 , ¢, and the firing level of the two units of the third 

layer. For this purpose, we ignored the input and the second layer of the 

network. We manually set the firing level of the two units of the third layer 

to grid points (xa+mx△ x,y。+nx△y), and calculated the output level of the units 
of the network, which correspond to points in the three dimensional space. 

The result is shown in Fig. 6. The adjacent points are connected by line 

segments. As is evident from the figure, the firing level of the third layer 

units correspond to a curved global coordinate system on the hemisphere, which 

1s apparently the desired internal representation. Note that if PCA, which 1s 

a linear・method, is used, this problem of finding the representation for a 

hemisphere is a very hard one. The linear method can only approximate the 

hemisphere by a plane intersecting it. 

・・・・・・-・・・・・----・・・・・・・・・・・・・ 

Fig.6 Self organized curved coordinate axes 
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Conclusion and discussion 

The MLP's property of acquiring internal representation from examples has 

been shown for some examples by simulation. Since the extraction of the 

internal representation is equivalent to nonlinear coordinate transformation, 

MLP has the potential to execute interpolation, i.e. generalization, in a different 

way from MBR. In the simulation, five layered hour-glass model has been 

employed for nonlinear coordinate transformation. The model is the improved 

version of the three layered hour-glass model, which can only do linear 

coordinate transformation. The network model employed here can be used as 

a feature extractor by eliminating the latter half, and can be used as a 

preprocessor for pattern recognition, image processing and other applications. 

(See Fig. 7) 
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Fig.7 Feature extractor using part of the 
five layered hour-glass model 
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In the simulation, the dimension of the manifold, which is of course lower 

than the dimension of the original space, was known in advance, and we set 

the number of the third layer unit to this number. Considering that the BP 

algorithm just executes the gradient descent method, the only constraint for 

this problem is this setting of the third layer. Therefore, the successful 

acquisition of internal representation (=nonlinear global coordinate axes of 

the manifold) is attributed to this dimensionality reduction. 

Then, naturally there arises a question, what if the dimension of the manifold 

is unknown. In connection with this question, we propose a conjecture that 

if the dimension of the third layer is too small for the manifold, the connection 

weights will diverge on the. way of learning. Using this fact, the appropriate 

number of unit can be found by increasing the number gradually while 

divergence is observed. 

The simulations for more complicated data, natural data and the theoretical 

analysis are our future problem. 
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