
ノ

TR-A-0060

Objective Functions for Improved Pattern

Classification with Back-propagation Networks

-BPネットワークにおける誤差測度の改良一

Ronald CHRISLEY, Erik MCDERMOTT
and Shigeru KATAGIRI

ロナルド・クリスリ エリック・マクダモット片桐滋

..

1989. 8. 22

ATR視聴覚機構研究所
〒619-02京都府相楽郡精華町乾谷岱07749-5-1411

ATR Auditory and Visual Perception Research Laboratories

lnuidani, Seika-cho, Soraku-gun, Kyoto 619-02 Japan

Telephone: +81-77 49-5-1411
Facsimile: +81-7749-5-1408
Telex: 5452-516 ATR J

c 閥ATR視聴覚機構研究所

Objective Functions for Improved Pattern Classification

with Back-propagation Networks

R. Chrisley, E. McDermott, S. Katagiri

ATR Auditory and Visual Perception
Research Laboratories, Kyoto, Japan

ABSTRACT

A discrepancy is noted between the error measure implied by standard
objective functions used for the training of back-propagation networks
and their actual error in performance. Specifically, if one uses such a
network for pattern classification, with one output node per class, and
the most active output node indicating the network's classification of the
input, then standard objective functions will 1) ascribe non-zero error to
network states that are classifying correctly and 2) modify the network
more than is necessary to account for incorrectly classified input, thus
violating the "minimal disturbance principle." It is hypothesized that
objective functions that lack these two characteristics will more closely
reflect the actual recognition error and thus their use will result in better
performance (i.e., fewer classification errors). Several such functions are
presented, and a few are benchmarked against standard error functions on
phoneme recognition tasks. Two of the methods show a consistent
improvement in performance on a small (BDG) task, but result in worse
performance for a large (all consonants) task.

1. Introduction

It has already been suggested (Kohonen, Chrisley, Barna,'88, inter alia) that
the performance of back-propagation (BP) networks as pattern classifiers
would be enhanced if the well-known discrepancy between minimization
of an error function and minimization of classification errors could be
somehow explicitly addressed. That is, BP uses an objective function,
which determines an ideal response to the current input, and then
compares the actual response to the ideal response in order to calculate
error. Change in the weights of the network is then related to the error
thus calculated. It is our hypothesis that if the objective function used
results in an error value that more closely models actual recognition error,
then minimization of that error will result in better actual performance
(i.e., fewer classification errors).

Specifically, we first propose that an objective function that always yields a
zero error value for correct classifications will improve overall
performance by minimizing classification errors further than could be
done with a standard objective function. Our second proposition is that
the target output for incorrect classifications should be chosen so that the
minimum necessary change in the network is made. Both proposals can
be seen as applications of Widrow, Winter, and Baxter's "minimal
disturbance principle" (MDP):

The idea is to adapt the network to properly respond to the newest input
pattern while minimally disturbing the responses already trained in for
the previous input patterns. Unless this principle is practiced, it is
difficult for the network to simultaneously store all of the required
pattern responses ...

When training the network to respond correctly to various input patterns,
the "golden rule" is: give the responsibility to the neuron or neurons that
can most easily assume it. In other words, don't rock the boat any more
than necessary to achieve the desired. training objective. This minimal
disturbance principle has been tested extensively, and appears to
converge and behave robustly in all cases.1

But they go on to say that "a great deal of effort will be required to derive
its [the MDP's] mathematical properties." It is our idea to analyse the
principle in terms of which objective functions to use, and to conduct this
analysis in two cases: the case where the network's current classification is
correct, and the case where the current classification is incorrect.

2. The standard approach

We will take the following to be the standard means of using BP for
pattern classification. There are a number of input units, n, equal to the
dimensionality of the patterns to be classified. Then there are 1 or more
layers of hidden units, and last there is an output layer with a number of
units m equal to the number of categories into which the patterns are to be
classified. Recognition involves the fixing of the input units to the values
of one of the input patterns to be classified. This activation is forward-
propagated through the network, until the values for the output units are
determined. The input is classified as being in the class corresponding to
the output unit with the highest value (perhaps requiring some minimal
margin of error difference between the greatest and second greatest output
values).

Note that this itself is an improvement of the standard BP recognition
algorithm, which was developed principally for deterministic (i.e., non-
statistical, where input patterns may belong to more than one category
with different probabilities) pattern recognition, where it is not
uncommon to be able to train an input to produce an ideal output, i.e, one
that is almost a unit-vector (e.g., [0.1, 0.1, 0.1, 0.9, 0.1]). In such cases,
equality of the output with one of them ideal vectors is checked, and if it is
not equal to any of them, then it is considered a misclassification. Classes
are associated with whole patterns of activity across the output units, not
just with a particular unit. This recognition rule is obviously too
stringent, especially in the case of statistical pattern classification, since it
might be impossible to get all of the inputs to produce a near-ideal output
due to the fact that the same input is mapped to different classes, and
therefore ideal outputs, with different probabilities. (Dahl'87) has pointed

1 (Widrow, Winter, and Baxter'87), pp. 417, 419-20.

2

out that the information in the network will be put to better use if the
recognition rule is to choose the class whose ideal pattern is closest to the
current output. It is clear to see that in the case of near-unit-vector ideal
outputs, this is equivalent to the rule we first described, above: choose the
class whose output unit is greatest.

3. McClelland's logarithmic error

The use of a standard error function, in combination with a standard
sigmoid activation function, results in near-zero weight changes for
output units when they are maximally incorrect (i.e., when the difference
between desired and actual outputs is close to one). This means the
network will learn very little in precisely those cases where it should learn
the most. This is especially a problem in learning tasks that involve a
large number of classes, since a network will learn to drive all the outputs
to zero, unless each output node learns a substantial amount in those few
cases when its target is one (note that this problem could be solved by
using non-unit targets). McClelland and Franzini (Franzini'88) have
suggested an error function that solves this problem. They define the error
to be the sum of the log of the squared difference between desired and
actual output. This results in weight changes that go to zero as the
difference goes to zero, but go to infinity as the difference approaches 1.
(Fahlman'88) suggests a hyperbolic arctangent error function for the same
reason. We used a variation on McClelland's error (Haffner'88) as a
standard against which to benchmark our proposed error functions when
we were considering problems with many classes, such as the all
consonants task in phoneme recognition.

4. Our proposals

4.1. Don't learn when correct

Although learning when correct may be helpful at early stages of learning,
one of our central hypotheses is that at least in the fine tuning stage,
performance will be mcreased if you don't try to make the network
conform to some ideal response, since it may be impossible to do so
without unlearning other patterns (cf the discussion of statistical pattern
recognition in section 2. above). Part of LVQ2's improved performance
over LVQ, for example, is its adherence to this principle. The principle is
easy enough to implement: if, on a particular input pattern, the
recognition rule determines a correct classification, then set the desired
outputs to be the actual outputs. This will result in a zero error value, and
thus no change in the weight~. Some results of using this error function
are given below, under experiments. Although we have been assuming
that the goal of any new error function is to improve performance on test
data, even perhaps at the expense of greater learning time, this method
might actually result in a shorter learning time, since the samples that
don't require more learning are skipped.

3

4.2. Use the closest correct output as the target

Our second proposal is one idea of how to make the objective function
minimally disturb the network in the case of an incorrect classification.
The initial insight is that once one abandons the restriction of ideal (i.e.,
near-unit-vector) target output vectors, then one has an infinite number of
target output vectors to choose from. That is, there are an infinite number
of vectors whose largest coordinate is the one corresponding to the correct
category. Keeping the MDP in mind, and remembering that the
recognition rule involves a margin of error a (the classification is that of
the most active output unit, if it is at least a greater than the second most
active unit), we can then choose the target output in a principled manner:
out of the subspace of vectors that 1) have as their greatest coordinate the
one that corresponds to the correct category and 2) meet the condition that
their greatest coordinate is at least a greater than the second greatest,
choose the vector closest to the actual output vector. This subspace has the
nice property of having a convex boundary (where it is bounded), and
thus, for any vector not in the subspace, there will be a unique closest
vector in・the subspace. Although the general n-dimensional solution for
the closest correct vector, given an output vector and a category, is rather
complex, the 3-dimensional solution is rather easy to derive, and thus we
could apply this method to the 3-category BDG task. The following
equations are used to calculate a proposed target vector for each of the
possible two (in our case; in general, N-1) cases: when the closest target
falls on the xt-xa-a=O plane, and when it falls on the xt-Xb-d=O, where Xt is
the output unit corresponding to the correct class, and xa and Xb are the
other outputs. Then, the distances between each of these proposed targets
and the actual output of the network are calculated; the target that is
closest is used for error calculation and weight change. The equations:

Ot + Oc + Oi + 2d +μOt + Oc + Oi -d +μOt + Oc + Oi -d -2μ
dt ='l , dc ='l , di = -

where:

dt, ot are the desired and actual values of the output node that
corresponds to the correct class;

dc, oc are the desired and actual values of the output node of
the current case (of the two possible cases) we are considering;

a is the margin of error term used in recognition, mentioned
above;

Ot + Oc -20i -d +
μ= [2] (i.e., μis equal to the bracketed term

when it is greater than zero, otherwiseμis equal to zero).

4

Notice that ifμis greater than zero, the targeぉaresimply:

dt = the average of ot and oc, plus a/2;

de= the average of ot and oc, minus a/2;

di= Oi.

Initial results on the BDG task of this idea under a few parameter choices,
however, were not competitive with standard methods.

Possible variations on this idea include using a metric other than the
Euclidean in order to determine closeness (see 4.3. below), and using a
value for a different than the one used in recognition. We also tried a
slightly related idea: when incorrect, set the target to one for the unit that
should have been greatest, zero for the unit that (incorrectly) was greatest,
and set all the other targets to be equal to the actual outputs. Again, initial
results on the BDG task of this idea under a few parameter choices,
however, were not competitive with standard methods.

4.3. Use weight commitment to find closest output

A different way of construing the MDP in the incorrect case is to
minimally disturb the weights that have already been committed and are
thus storing information about previous samples. That is, choose a target
output that might not be closest in Euclidean distance, but that will assign
most of the blame to uncommitted weights (those whose absolute values
are near zero), and proportionately less blame to weights with higher
absolute values. One could use the same method as described above,
except that instead of using the unweighted Euclidean metric, one uses the
weighted metric defined by:

d(o,t) =
2
 ‘‘,／ ＿tー一.

1

1
0

（

W
ー

%
>
]
曰

where:
o 1s the actual output vector;
t is the target vector;
d(x, y) is the distance between vectors x and y;
Li is the number of nodes in the ith layer of the network;
N is the number of layers in the network;
and the weights w are defined by:

5

．．

N

.

J

b

y

y

z

A

A
L
Nて
〗
瞑s

ur

ー

c

e

＝

i

r

w

d

e

n

fi e

d

e

r

a

,s
A

e

h

t

e

r

e

h

w

Ln-1

Ar= LぷCkj;
k=l

•9
ー＝

1
.
J

A

and where Ckj are the standard interconnection weights from
unit k of layer nー1to unit j of layer n.

(Widrow, Winter, and Baxter'87) modify weights based on which units
have outputs close to zero, but do not look at the values of the weights.
Also, they only use the outputs to determine priority of change, not
amount. It is interesting to note that several connectionist researchers
have been spending effort on devising schemes that do not recruit more
weights, in order to improve generalization (see below). In this light,
perhaps it would be best for the weights should have less and less
influence as learning proceeds. Information is initially distributed about
the network, but as performance improves, the network constrains itself to
fine tune the solution it has, instead of recruiting more weights to learn an
arbitrary solution. This may require the network to have sophisticated
abilities to monitor its own performance.

4.4. Use average response to find closest output

Another idea is to use the average correct response of the network to
determine the target vectors. This proposal adheres to the MDP, but
unlike the above methods, and like the standard method, it advocates a
single target for the entire class (although this target will change slowly
over time), which might prove necessary if the other methods have
difficulty in converging because of the dynamic nature of the target
outputs. One proposal would be to start out with near-unit-vectors, but
then at regular intervals sample the correct outputs for each of the classes,
and average them, thus providing a single target output for that class, until
the next sample is drawn. This way the targets will be guaranteed to be
consistent (i.e., they will meet the criterion of the greatest unit
corresponding to the correct vector), but they will also better conform to
the actual outputs, so that correct outputs will be result in a smaller change
in weight than would a standard, near-unit target.

There is also an "on-the-fly" version of the adaptive target scheme that is
related to the method described above in a way analogous to the difference

6

between learning after every sample and only learning after an entire
epoch of samples. The targets are intialised to some value (the unit
vectors, for example). Then, after each sample that is classified correctly,
the targets are modified to be closer to the actual outputs:

di(t+l) = di(t) +冗[oi(t)-di(t)],

where dis the target output vector, o is the actual output vector, and冗 isa
constant that determines what proportion of the distance the target will
move toward the actual output. A value of 0.5 for冗 willaverage the two
vectors. We have generally found that the reciprocal of the number of
samples per epoch is a good first guess for the best value of冗. Some resulぉ
of using this on-the-fly method are described under Experiments, below.

If there is a wide variance in the correct responses for a particular class, it
might be advantageous to have two or more targets for one class, to
account for the clusters in the correct output vectors. This would be much
better than trying to use one vector for all the clusters. Either one could do
clustering once, at the beginning of learning, clustering samples by their
input values, or one could cluster periodically during learning, using
output values produced by the samples. One could even use L VQ or L VQ2
as a means of doing this.

5. Experiments

5.1 The BDG task

We benchmarked the performance of three error function methods on a
phoneme recognition task involving 3600 samples of the stop consonants
/b/, /d/, and /g/. The architecture for the network was the TDNN as
described in (Haffner'88) and originally mentioned in (Waibel). Although
the reader should consult those works for details of our network, we will
summarize here the connectivity:

Input Layer 1 Layer2 Output Total

Units 241 104 27 3 375
Physical

16 8 3 3 units

Fan-in

゜
49 41 10

Connections

゜
5096 1107 30 6233

Physical

゜
392 123 6 521

connections

Table 1. Network architecture figures for the BDG task. Taken from
(Haffner, Waibel, Sawai, and Shikano'88; page 8).

7

The learning rate was 0.1, the momentum
employed momentum scaling, learning
skipping of learned samples as described in
given below:

value was 0.9. The network
rate overshoot control, and
(Haffner'88). The results are

EPOCHS

50 55 60 65 70

Standard 2.97 2.64 2.48 2.49 2.41

DLC 2.63 2.23 2.74 2.55 2.11

ADT 2.30 2.26 2.30 2.54 2.02

Table 2: Test data error rates (averaged over 10 trials) on the BDG task
as determined by error function and epoch in the learning phase. DLC =
"don't learn when correct" method, a = 0.5. ADT = adaptive target
method, 冗 =0.01.

Performance on BOG Task

S
叉
1

ぢ

a
L
u
o
xピ
ぷ
I

ぶ

5

5

5

4

5

3

5

2

5

ー

5

0

5

4

3

2

1

50 55

Standard

60

Epochs

DLCMethod

65 70

ADTMethod

Figure 1. Error percentages (number of rnisclassifications of test data
samples divided by the number of samples tested on [3600]) at different
stages of learning for the three different error functions on the BOG task,
a= o.s, 冗=0.01. Error bars indicate one standard deviation. Percentages
were averaged over 10 trials.

As one can see from Table 2, both the DLC ("don't learn when correct")
and the ADT ("adaptive target") methods show a modest improvement in
performance on the BDG task over the standard error function. Also, one
can deduce from Figure 1 that the DLC method generally found the best
solutions overall, although it frequently found poor solutions as well. It
seems that if one 1) desires the best performance; 2) is willing to perform

8

ン

several learning trials in order to achieve it; and 3) has a means of
comparing the results of different trials (i.e., one has some test data
comparable to the data on which one desires the network to perform), then
the DLC method will be the most appropriate. But if one can only afford
one or a few trials, then the small variance of the ADT results indicate that
ADT would be a safe bet.

5.1 The all consonants task

We also compared the performance of these methods on an all consonant
phoneme recognition task (9000 samples, 18 classes). Although the
methods clearly performed better than the standard error fun℃ tton, this is
not a notable accomplishment, given that the standard function does so
poorly because of the large number of categories. For a fair comparison, we
benchmarked them against a network using McClelland's logarithmic
error function (see section 3, above). The two methods sometimes came
within 1-2% of the performance of the McClelland network, but were
always at least 5% below its performance on test data. Perhaps this is
dependent on the parameters used.

6. Summary

Several alternatives to the standard error function for back propagation
were presented. These were designed to obey, to varying degrees, the
minimal disturbance principle. The main ideas were 1) don't learn when
correct; 2) use the closest target vector; 3) use the closest target vector
weighted by weight commitment; 4) use an averaged target vector. Ideas 1)
and 4) showed modest improvements over the standard error function
method on a small (3600 samples, 3 classes) phoneme recognition task.
They performed significantly worse than standard methods on a large
(9000 samples, 18 classes) phoneme recognition task. The success of the
methods in the BDG case indicates that future exploration of parameters
might result in an error function that can out-perform standard methods
on large tasks as well.

7. References

Dahl, E. D. (1987) "Accelerated learning using the generalized
delta rule", Proceedings of the First Annual IEEE
International Conference on Neural Networks, San Diego,
CA ..

Fahlman, S. E. (1988) "An empirical study of learning speed in
back-propagation networks," Carnegie Mellon technical
report CMU-CS-88-162.

Franzini, M. A. (1987) "Speech recognition with back-
propagation," Proceedings of the Ninth Annual Conference
of IEEE Engineering in Medicine and Biology Society.

，

Haffner, P. (1988) "Dynet, a fast program for learning in neural
networks," ATR Interpreting Telephony Research
Laboratories technical report TR-1-0059.

Haffner, P, Waibel, A., Sawai, H., and Shikano, K. (1988) "Fast
back-propagation learning methods for neural networks in
speech," ATR Interpreting Telephony Research Laboratories
technical report TR-1-0058.

Hampshire, J. B. and Waibel, A. H. (1989) "A novel objective
function for improved phoneme recognition using time-
delay neural networks", in (?).

Hinton, G. E. (1987) ℃ onnectionist learning procedures",
Revised version of Technical Report CMU-CS-87-115, to
appear (appeared ?) in Artificial Intelligence.

Kohonen, T., Barna, G., and Chrisley, R. (1988) "Statistical pattern
recognition with neural networks: benchmarking studies,"
Proceedings of the Second Annual IEEE International
Conference on Neural Networks, San Diego, CA ..

Solla, S. A., Levin, E., and Fleisher, M. (1988) "Accelerated
Learning in Layered Neural Networks" in Complex Systems
2.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K.
(1988) "Phoneme recognition using time-del"ay neural
networks," ATR Interpreting Telephony Research
Laboratories technical report TR-1-0006.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K.
(1988) "Phoneme recognition using time-delay neural
networks," IEEE transactions on acoustics, speech, and signal
processing.

Widrow, B., Winter, R. G., and Baxter, R. A. (1987) "Learning
phenomena in layered neural networks ", in the Proceedings
of the First Annual IEEE International Conference on Neural
Networks, San Diego, CA ..

“

10

	001
	002
	003

