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ABSTRACT 

A discrepancy is noted between the error measure implied by standard 
objective functions used for the training of back-propagation networks 
and their actual error in performance. Specifically, if one uses such a 
network for pattern classification, with one output node per class, and 
the most active output node indicating the network's classification of the 
input, then standard objective functions will 1) ascribe non-zero error to 
network states that are classifying correctly and 2) modify the network 
more than is necessary to account for incorrectly classified input, thus 
violating the "minimal disturbance principle." It is hypothesized that 
objective functions that lack these two characteristics will more closely 
reflect the actual recognition error and thus their use will result in better 
performance (i.e., fewer classification errors). Several such functions are 
presented, and a few are benchmarked against standard error functions on 
phoneme recognition tasks. Two of the methods show a consistent 
improvement in performance on a small (BDG) task, but result in worse 
performance for a large (all consonants) task. 

1. Introduction 

It has already been suggested (Kohonen, Chrisley, Barna,'88, inter alia) that 
the performance of back-propagation (BP) networks as pattern classifiers 
would be enhanced if the well-known discrepancy between minimization 
of an error function and minimization of classification errors could be 
somehow explicitly addressed. That is, BP uses an objective function, 
which determines an ideal response to the current input, and then 
compares the actual response to the ideal response in order to calculate 
error. Change in the weights of the network is then related to the error 
thus calculated. It is our hypothesis that if the objective function used 
results in an error value that more closely models actual recognition error, 
then minimization of that error will result in better actual performance 
(i.e., fewer classification errors). 

Specifically, we first propose that an objective function that always yields a 
zero error value for correct classifications will improve overall 
performance by minimizing classification errors further than could be 
done with a standard objective function. Our second proposition is that 
the target output for incorrect classifications should be chosen so that the 
minimum necessary change in the network is made. Both proposals can 
be seen as applications of Widrow, Winter, and Baxter's "minimal 
disturbance principle" (MDP): 



The idea is to adapt the network to properly respond to the newest input 
pattern while minimally disturbing the responses already trained in for 
the previous input patterns. Unless this principle is practiced, it is 
difficult for the network to simultaneously store all of the required 
pattern responses ... 

When training the network to respond correctly to various input patterns, 
the "golden rule" is: give the responsibility to the neuron or neurons that 
can most easily assume it. In other words, don't rock the boat any more 
than necessary to achieve the desired. training objective. This minimal 
disturbance principle has been tested extensively, and appears to 
converge and behave robustly in all cases.1 

But they go on to say that "a great deal of effort will be required to derive 
its [the MDP's] mathematical properties." It is our idea to analyse the 
principle in terms of which objective functions to use, and to conduct this 
analysis in two cases: the case where the network's current classification is 
correct, and the case where the current classification is incorrect. 

2. The standard approach 

We will take the following to be the standard means of using BP for 
pattern classification. There are a number of input units, n, equal to the 
dimensionality of the patterns to be classified. Then there are 1 or more 
layers of hidden units, and last there is an output layer with a number of 
units m equal to the number of categories into which the patterns are to be 
classified. Recognition involves the fixing of the input units to the values 
of one of the input patterns to be classified. This activation is forward-
propagated through the network, until the values for the output units are 
determined. The input is classified as being in the class corresponding to 
the output unit with the highest value (perhaps requiring some minimal 
margin of error difference between the greatest and second greatest output 
values). 

Note that this itself is an improvement of the standard BP recognition 
algorithm, which was developed principally for deterministic (i.e., non-
statistical, where input patterns may belong to more than one category 
with different probabilities) pattern recognition, where it is not 
uncommon to be able to train an input to produce an ideal output, i.e, one 
that is almost a unit-vector (e.g., [0.1, 0.1, 0.1, 0.9, 0.1]). In such cases, 
equality of the output with one of them ideal vectors is checked, and if it is 
not equal to any of them, then it is considered a misclassification. Classes 
are associated with whole patterns of activity across the output units, not 
just with a particular unit. This recognition rule is obviously too 
stringent, especially in the case of statistical pattern classification, since it 
might be impossible to get all of the inputs to produce a near-ideal output 
due to the fact that the same input is mapped to different classes, and 
therefore ideal outputs, with different probabilities. (Dahl'87) has pointed 

1 (Widrow, Winter, and Baxter'87), pp. 417, 419-20. 
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out that the information in the network will be put to better use if the 
recognition rule is to choose the class whose ideal pattern is closest to the 
current output. It is clear to see that in the case of near-unit-vector ideal 
outputs, this is equivalent to the rule we first described, above: choose the 
class whose output unit is greatest. 

3. McClelland's logarithmic error 

The use of a standard error function, in combination with a standard 
sigmoid activation function, results in near-zero weight changes for 
output units when they are maximally incorrect (i.e., when the difference 
between desired and actual outputs is close to one). This means the 
network will learn very little in precisely those cases where it should learn 
the most. This is especially a problem in learning tasks that involve a 
large number of classes, since a network will learn to drive all the outputs 
to zero, unless each output node learns a substantial amount in those few 
cases when its target is one (note that this problem could be solved by 
using non-unit targets). McClelland and Franzini (Franzini'88) have 
suggested an error function that solves this problem. They define the error 
to be the sum of the log of the squared difference between desired and 
actual output. This results in weight changes that go to zero as the 
difference goes to zero, but go to infinity as the difference approaches 1. 
(Fahlman'88) suggests a hyperbolic arctangent error function for the same 
reason. We used a variation on McClelland's error (Haffner'88) as a 
standard against which to benchmark our proposed error functions when 
we were considering problems with many classes, such as the all 
consonants task in phoneme recognition. 

4. Our proposals 

4.1. Don't learn when correct 

Although learning when correct may be helpful at early stages of learning, 
one of our central hypotheses is that at least in the fine tuning stage, 
performance will be mcreased if you don't try to make the network 
conform to some ideal response, since it may be impossible to do so 
without unlearning other patterns (cf the discussion of statistical pattern 
recognition in section 2. above). Part of LVQ2's improved performance 
over LVQ, for example, is its adherence to this principle. The principle is 
easy enough to implement: if, on a particular input pattern, the 
recognition rule determines a correct classification, then set the desired 
outputs to be the actual outputs. This will result in a zero error value, and 
thus no change in the weight~. Some results of using this error function 
are given below, under experiments. Although we have been assuming 
that the goal of any new error function is to improve performance on test 
data, even perhaps at the expense of greater learning time, this method 
might actually result in a shorter learning time, since the samples that 
don't require more learning are skipped. 
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4.2. Use the closest correct output as the target 

Our second proposal is one idea of how to make the objective function 
minimally disturb the network in the case of an incorrect classification. 
The initial insight is that once one abandons the restriction of ideal (i.e., 
near-unit-vector) target output vectors, then one has an infinite number of 
target output vectors to choose from. That is, there are an infinite number 
of vectors whose largest coordinate is the one corresponding to the correct 
category. Keeping the MDP in mind, and remembering that the 
recognition rule involves a margin of error a (the classification is that of 
the most active output unit, if it is at least a greater than the second most 
active unit), we can then choose the target output in a principled manner: 
out of the subspace of vectors that 1) have as their greatest coordinate the 
one that corresponds to the correct category and 2) meet the condition that 
their greatest coordinate is at least a greater than the second greatest, 
choose the vector closest to the actual output vector. This subspace has the 
nice property of having a convex boundary (where it is bounded), and 
thus, for any vector not in the subspace, there will be a unique closest 
vector in・the subspace. Although the general n-dimensional solution for 
the closest correct vector, given an output vector and a category, is rather 
complex, the 3-dimensional solution is rather easy to derive, and thus we 
could apply this method to the 3-category BDG task. The following 
equations are used to calculate a proposed target vector for each of the 
possible two (in our case; in general, N-1) cases: when the closest target 
falls on the xt-xa-a=O plane, and when it falls on the xt-Xb-d=O, where Xt is 
the output unit corresponding to the correct class, and xa and Xb are the 
other outputs. Then, the distances between each of these proposed targets 
and the actual output of the network are calculated; the target that is 
closest is used for error calculation and weight change. The equations: 

Ot + Oc + Oi + 2d +μOt  + Oc + Oi -d +μOt  + Oc + Oi -d -2μ 
dt ='l  , dc ='l  , di = -

where: 

dt, ot are the desired and actual values of the output node that 
corresponds to the correct class; 

dc, oc are the desired and actual values of the output node of 
the current case (of the two possible cases) we are considering; 

a is the margin of error term used in recognition, mentioned 
above; 

Ot + Oc -20i -d + 
μ= [ 2 ] (i.e., μis equal to the bracketed term 

when it is greater than zero, otherwiseμis equal to zero). 
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Notice that ifμis greater than zero, the targeぉaresimply: 

dt = the average of ot and oc, plus a/2; 

de= the average of ot and oc, minus a/2; 

di= Oi. 

Initial results on the BDG task of this idea under a few parameter choices, 
however, were not competitive with standard methods. 

Possible variations on this idea include using a metric other than the 
Euclidean in order to determine closeness (see 4.3. below), and using a 
value for a different than the one used in recognition. We also tried a 
slightly related idea: when incorrect, set the target to one for the unit that 
should have been greatest, zero for the unit that (incorrectly) was greatest, 
and set all the other targets to be equal to the actual outputs. Again, initial 
results on the BDG task of this idea under a few parameter choices, 
however, were not competitive with standard methods. 

4.3. Use weight commitment to find closest output 

A different way of construing the MDP in the incorrect case is to 
minimally disturb the weights that have already been committed and are 
thus storing information about previous samples. That is, choose a target 
output that might not be closest in Euclidean distance, but that will assign 
most of the blame to uncommitted weights (those whose absolute values 
are near zero), and proportionately less blame to weights with higher 
absolute values. One could use the same method as described above, 
except that instead of using the unweighted Euclidean metric, one uses the 
weighted metric defined by: 

d(o,t) = 
2
 ‘‘,／ ＿tー一.
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where: 
o 1s the actual output vector; 
t is the target vector; 
d(x, y) is the distance between vectors x and y; 
Li is the number of nodes in the ith layer of the network; 
N is the number of layers in the network; 
and the weights w are defined by: 
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and where Ckj are the standard interconnection weights from 
unit k of layer nー1to unit j of layer n. 

(Widrow, Winter, and Baxter'87) modify weights based on which units 
have outputs close to zero, but do not look at the values of the weights. 
Also, they only use the outputs to determine priority of change, not 
amount. It is interesting to note that several connectionist researchers 
have been spending effort on devising schemes that do not recruit more 
weights, in order to improve generalization (see below). In this light, 
perhaps it would be best for the weights should have less and less 
influence as learning proceeds. Information is initially distributed about 
the network, but as performance improves, the network constrains itself to 
fine tune the solution it has, instead of recruiting more weights to learn an 
arbitrary solution. This may require the network to have sophisticated 
abilities to monitor its own performance. 

4.4. Use average response to find closest output 

Another idea is to use the average correct response of the network to 
determine the target vectors. This proposal adheres to the MDP, but 
unlike the above methods, and like the standard method, it advocates a 
single target for the entire class (although this target will change slowly 
over time), which might prove necessary if the other methods have 
difficulty in converging because of the dynamic nature of the target 
outputs. One proposal would be to start out with near-unit-vectors, but 
then at regular intervals sample the correct outputs for each of the classes, 
and average them, thus providing a single target output for that class, until 
the next sample is drawn. This way the targets will be guaranteed to be 
consistent (i.e., they will meet the criterion of the greatest unit 
corresponding to the correct vector), but they will also better conform to 
the actual outputs, so that correct outputs will be result in a smaller change 
in weight than would a standard, near-unit target. 

There is also an "on-the-fly" version of the adaptive target scheme that is 
related to the method described above in a way analogous to the difference 
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between learning after every sample and only learning after an entire 
epoch of samples. The targets are intialised to some value (the unit 
vectors, for example). Then, after each sample that is classified correctly, 
the targets are modified to be closer to the actual outputs: 

di(t+l) = di(t) +冗[oi(t)-di(t)], 

where dis the target output vector, o is the actual output vector, and冗 isa 
constant that determines what proportion of the distance the target will 
move toward the actual output. A value of 0.5 for冗 willaverage the two 
vectors. We have generally found that the reciprocal of the number of 
samples per epoch is a good first guess for the best value of冗. Some resulぉ
of using this on-the-fly method are described under Experiments, below. 

If there is a wide variance in the correct responses for a particular class, it 
might be advantageous to have two or more targets for one class, to 
account for the clusters in the correct output vectors. This would be much 
better than trying to use one vector for all the clusters. Either one could do 
clustering once, at the beginning of learning, clustering samples by their 
input values, or one could cluster periodically during learning, using 
output values produced by the samples. One could even use L VQ or L VQ2 
as a means of doing this. 

5. Experiments 

5.1 The BDG task 

We benchmarked the performance of three error function methods on a 
phoneme recognition task involving 3600 samples of the stop consonants 
/b/, /d/, and /g/. The architecture for the network was the TDNN as 
described in (Haffner'88) and originally mentioned in (Waibel). Although 
the reader should consult those works for details of our network, we will 
summarize here the connectivity: 

Input Layer 1 Layer2 Output Total 

Units 241 104 27 3 375 
Physical 

16 8 3 3 units 

Fan-in 

゜
49 41 10 

Connections 

゜
5096 1107 30 6233 

Physical 

゜
392 123 6 521 

connections 

Table 1. Network architecture figures for the BDG task. Taken from 
(Haffner, Waibel, Sawai, and Shikano'88; page 8). 
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The learning rate was 0.1, the momentum 
employed momentum scaling, learning 
skipping of learned samples as described in 
given below: 

value was 0.9. The network 
rate overshoot control, and 
(Haffner'88). The results are 

EPOCHS 

50 55 60 65 70 

Standard 2.97 2.64 2.48 2.49 2.41 

DLC 2.63 2.23 2.74 2.55 2.11 

ADT 2.30 2.26 2.30 2.54 2.02 

Table 2: Test data error rates (averaged over 10 trials) on the BDG task 
as determined by error function and epoch in the learning phase. DLC = 
"don't learn when correct" method, a = 0.5. ADT = adaptive target 
method, 冗 =0.01. 

Performance on BOG Task 
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DLCMethod 

65 70 

ADTMethod 

Figure 1. Error percentages (number of rnisclassifications of test data 
samples divided by the number of samples tested on [3600]) at different 
stages of learning for the three different error functions on the BOG task, 
a= o.s, 冗=0.01. Error bars indicate one standard deviation. Percentages 
were averaged over 10 trials. 

As one can see from Table 2, both the DLC ("don't learn when correct") 
and the ADT ("adaptive target") methods show a modest improvement in 
performance on the BDG task over the standard error function. Also, one 
can deduce from Figure 1 that the DLC method generally found the best 
solutions overall, although it frequently found poor solutions as well. It 
seems that if one 1) desires the best performance; 2) is willing to perform 
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several learning trials in order to achieve it; and 3) has a means of 
comparing the results of different trials (i.e., one has some test data 
comparable to the data on which one desires the network to perform), then 
the DLC method will be the most appropriate. But if one can only afford 
one or a few trials, then the small variance of the ADT results indicate that 
ADT would be a safe bet. 

5.1 The all consonants task 

We also compared the performance of these methods on an all consonant 
phoneme recognition task (9000 samples, 18 classes). Although the 
methods clearly performed better than the standard error fun℃ tton, this is 
not a notable accomplishment, given that the standard function does so 
poorly because of the large number of categories. For a fair comparison, we 
benchmarked them against a network using McClelland's logarithmic 
error function (see section 3, above). The two methods sometimes came 
within 1-2% of the performance of the McClelland network, but were 
always at least 5% below its performance on test data. Perhaps this is 
dependent on the parameters used. 

6. Summary 

Several alternatives to the standard error function for back propagation 
were presented. These were designed to obey, to varying degrees, the 
minimal disturbance principle. The main ideas were 1) don't learn when 
correct; 2) use the closest target vector; 3) use the closest target vector 
weighted by weight commitment; 4) use an averaged target vector. Ideas 1) 
and 4) showed modest improvements over the standard error function 
method on a small (3600 samples, 3 classes) phoneme recognition task. 
They performed significantly worse than standard methods on a large 
(9000 samples, 18 classes) phoneme recognition task. The success of the 
methods in the BDG case indicates that future exploration of parameters 
might result in an error function that can out-perform standard methods 
on large tasks as well. 
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