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Abstract 

In this paper we describe a shift-tolerant neural network architecture for 

phoneme recognition. Our system is based on algorithms for LVQ (Learning 

Vector Quantization) [1, 2], recently developed by Teuvo Kohonen, which pay 

close attention to approximating optimal decision lines in a discrimination 

task. Recognition performances in the 98-99% correct range were obtained for 

L VQ networks aimed at speaker-dependent recognition of phonemes in small 

but ambiguous Japanese phonemic classes. A correct recognition rate of 97.7% 

was achieved by a single, larger L VQ network covering all Japanese consonants. 

These recognition results are at least as high as those obtained in the Time 

Delay Neural Network system developed by Alex Waibel et al. (1988), and 

suggest that L VQ could be the basis for a successful speech recognition system. 

c.t 
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1. Introduction 

To achieve the end goal of large vocabulary, speaker-independent, 
continuous speech recognition, it seems that a useful first step is to achieve 
high-performance phoneme recognition. For a system to yield this high 
performance, it must be endowed with high classification power and invariance 
under translation in time. The Time Delay Neural Network architecture 
recently developed by Alex Waibel et. al. [3] and the Back-propagation algorithm 
used therein seem to possess these properties, and very high recognition results 
were attained using this system. However there are other algorithms with these 
capabilities. Recent work by Kohonen [2], suggests that Learning Vector 
Quantization (L VQ) is a slightly more powerful classifier than Back-propagation, 
and furthermore that LVQ requires significantly less learning time than either 
Back-propagation or the Boltzmann Machine. Thus LVQ seems like a viable 
candidate for tasks that involve a very large training set size, such as speech 
recognition. We here present a shift-tolerant, LVQ-based phoneme recognition 
system which is capable of attaining recognition rates that are as high as those 
obtained for the TDNN system, and which requires little training time. 

2. Description of the Learning Vector Quantization Algorithms 

Kohonen presents two versions of L VQ [2]; here we refer to them as L VQ1 
and L VQ2. In both versions, each category to be learned is assigned a number of 
reference vectors, each of which has the same number of dimensions as the 
input vectors of the categories. In the recognition stage, an unknown input 
vector will be categorized by finding the reference vector that is closest to that 
input vector. The category that the reference vector belongs to will be given as 
the categorization of the unknown input vector. This classification scheme 
means partitioning the vector space into regions, or cells, defined by individual 
reference vectors. Both LVQ1 and LVQ2 assume a good initial configuration; 
this can be obtained by using the traditional K-means clustering procedure [7]. 
This initial configuration will not be optimal, but it places the reference vectors 
in the right general position. LVQ training then adjusts these positions so that 
each input vector has a reference vector of the right category as its closest 
reference vector. The difference between L VQ1 and L VQ2 is that they each use a 
different way of selecting the reference vectors to be adapted. We now describe 
each algorithm. 

2.1. LVQ1 

The adaptation rule for L VQ1 is as follows. For each trial, an input vector 
from one of the categories is presented as the input to the system. All the 
reference vectors are searched and the reference vector closest to the input 
vector is found, using a Euclidean measure of distance. If this reference vector 
belongs to the same category as the input vector, it is moved closer to the input 
vector, in proportion to the distance between the two vectors. If the closest 
reference vector belongs to a category other than that of the input vector, it is 
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moved away, again in proportion to the distance between the two vectors. One 
can see how this procedure is related to the goal of having a vector of the correct 
category as the reference vector closest to each input vector. Learning here is 
supervised: one needs to know the correct categorization of the input vector 
during training. 

More specifically, the adaptation rule for a closest r~ference vector IDi e 

Rn and an input vector x e R門s
IDi(t+ 1) = ffii(t) + a,(t) (x(t) -IDi(t)), 

if the reference vector belongs to the same category as the input vector, and 
IDi(t+ 1) = IDi(t) -a,(t) (x(t) -IDi(t)) 

if the reference vector belongs to a different category. Here t is the discrete time 
index, and a(t) is a monotonically decreasing function of time. 

2.2. LVQ2 

L VQ2 requires that a number of conditions be met for vector adaptation to 
occur. These conditions allow the system to p.ay closer attention to the decision 
lines of a given categorization problem. This, 1t seems, accounts for the superior 
performance of L VQ2. 
Kohonen, in his formulation of the L VQ2 algorithm, is particularly 

concerned with the problem of approximating decision lines corresponding to 
the optimal Bayes decision rule. Given a vector x, a set of classes {Ci, i=l,2, ….,K}, 
the probability density function p(x I Ci) of x in a class Ci, and the a priori 
probability p(Ci) of a class Ci, and the distribution di(x) = p(x I Ci)p(Ci) of class Ci, 
the Bayes decision rule is as follows: 

xis assigned to Ci iff di(x) > dj(x) for all j :I= i 

This rule will mipimize the number of misclassifications [2, 11]. This becomes 
particularly relevant when the class distributions overlap. If there is overlap, it 
is impossible to separate the classes perfectly; the task becomes that of finding the 
decision line which minimizes the number of misclassifications. This will be 
achieved by a decision line at the place where the class distributions cross. 
Ideally, a neural network should generate decision lines that approximate this 
optimal line. This is the motivation for LVQ2. 
Figure 1 helps to illustrate vector adaptation in LVQ2, for a simple one-

dimensional situation. For a given training vector x, three conditions must be 
met for learning to occur: 1) the nearest class must be incorrect; 2) the next-
nearest class (found by searching the reference vectors in the remaining classes) 
must be correct; 3) the training vector must fall inside a small, symmetric 
window defined around the midpoint of the reference vectors mi and mj--this 
midpoint (in higher dimensions, "midplane") being the decision boundary 
effected by the two vectors. If these conditions are met, the incorrect reference 
vector is moved further away from the input, while the correct reference vector 
is moved closer, according to: 
mi(t+1) = mi(t) -a(t) (x(t) -mi(t)) 
mj(t+ 1) = mj(t) + a(t) (x(t) -mj(t)) 
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where xis a training vector belonging to class j, mi is the reference vector for the 
incorrect category, mj is the reference vector for the correct category, and a(t) is a 
monotonically decreasing function of time. 
These requirements, taken together, assure that the decision line between 

the two vectors will eventually attain a near-optimal position given the 
probability distributions of the categories, namely, the place where the 
distributions cross. 
The intuition here is that LVQ2 is making use of local difference in class 

distributions to move the boundary in the right direction. This local difference 
in class distributions is measured indirectly, by measuring a difference in the 
number of rnisclassifications on either side of the L VQ2 window. Figure 1 may 
help explain the overall, stochastic effect. A difference in the class distributions 
at the position of the actual boundary in the pattern space is taken to indicate 
that the actual boundary is not optimal. This is the case in Figure 1, where at the 
position of the actual boundary, the distribution of class j is greater than that of 
class i. Thus, there will be more rnisclassifications of j's on the left side of the 
window than misclassifications of i's on the right side of the window. Now note 
that every misclassification of a j token on the left side of the window satisfies 
the L VQ2 conditions. L VQ2 will then push the closest but incorrect mi reference 
vector away from those j's, while pulling the mj reference vector closer. 
Precisely the opposite vector motions will occur for misclassifications of i's on 
the right side of the window. Of course, these vector motions displace the actual 
boundary realized by these vectors. In the Figure 1 scenario, there will then be 
more misclassified j's pushing the actual boundary to the left than misclassified 
i's pushing the boundary to the right. The net effect, then, will be to move the 
actual boundary to the left, i.e. closer to the optimal boundary. This will 
continue until the number of j rnisclassifications on the left side of the window 
is equal to the number of i rnisclassifications on the right side of the window; for 
a small window, this position will be close to the optimal Bayes boundary. 
To define the window in higher dimensions, we used the following 

method. The distances di and dj from x to mi and rnj are calculated, and the 
ratio d匹 jis found. Clearly, if mi is the closest vector, this ratio will always be 
less than 1. The window is then defined by setting a lower limit L for this ratio. 
Only training vectors with a di/ dj ratio greater than L (and less than 1) will be 
considered inside the window. The closer L is to 1, the smaller the window. 
Setting this kind of limit amounts to defining the window as the space between 
two Apollonian hyperspheres, each surrounding one of the two reference 
vectors [1]. 
Figure 1 also helps to illustrate the difference in goals between LVQ and 

K-means clustering. The reference vector configuration presented in Figure 1 
more or less corresponds to what the resu_lt of K-means clustering might be, 
given the category distributions shown. One can see, however, that the decision 
line realized by these two reference vectors is quite far from the optimal Bayes 
decision boundary, which is the target of LVQ learning. 

-、
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Goal: optimal discrimination of categories i and j 

Optimal 
decision boundary 

由(x)

d・(x) 
J 

m・
1 

Actual decision boundary 

／ 

m・ J 

x: a training vector of category j 

m・m・: reference vectors 1'J 
dj(x), dj(x): category distributions 

Figure 1. LVQ2 adaptation, one dimensional case. 
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To best comply with L VQ2 theory, the window should be as small as 
possible given the size of the training set. For an infinite training set, the 
window could be infinitely small. For finite training sets, there is the danger that 
an overly small window will be stuck between the training vectors it excludes, 
in a non-optimal position. But on the whole, setting the window size seemed to 
pose few problems; very similar performances were found for a broad range of 
window sizes. 

In both L VQ1 and L VQ2, cx:(t) is a small number which decreases over 
time. In our simulations, we usually used a linearly decreasing function of time 
such as 

cx:(t) = cx:(O) (1 -t/M), 

where Mis the maximum number of iterations, after which learning is halted. 
As such a function will force convergence, we need to estimate the 

number of iterations before training begins. Lacking a theory for this, we 
determined this number experimentally, using recognition rates on test data as 

the criterion for good learning. One way of estimating a(O) is to choose it as high 
as possible without it giving rise to an unstable system. In our system, a typical 
value of a(O) is 0.1; a typical value of M is 10 times the number of training 
tokens. We usually performed several training runs on the same set of reference 

vectors, progressively lowering the value of a(O). 
To allow for the approximation of the optimal boundary, it is important 

that the training tokens be presented in proportion to the overall probabilities 
(i.e. P(c)'s) of their classes. The training procedure, for each trial, is then to select 
a training token at random from the whole training set. Tokens from seldomly 
occuring categories are not duplicated; this would artificially raise the class 
distributions, and prevent the system from approximating the optimal class 
boundaries. 

3. System Architecture 

This phoneme recognition system was previously describe¢in [5] and [6]. 
Figure 2 shows the architecture of the recognition system used for the /b/, / d/, 
I g/ task. Each category is assigned a number of reference vectors. The L VQ 
training procedure is then applied to speech patterns that are stepped through in 
time, thus providing the system with a measure of shift-tolerance. To achieve 

this effect, we defined a 7 frame window1 which is shifted, one frame at a time, 
over the 15 frame speech token. Each window position yields an input vector of 
112 dimensions (7 frames x 16 channels). Given this input vector, LVQ1 or LVQ2 
is applied as described above. 
This moving window scheme requires a slightly different recognition 

procedure than simply finding the closest vector, as there are now several closest 

1 The choice of 7 frames here is somewhat arbitrary; widths ranging from 6 to 
9 frames gave very similar performances. Undoubtedly the optimal width 
will vary from task to task. 
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vectors, one for each window position. For each window position we calculate 
the distances between the input vector and the closest reference vector within 
each category. From this distance measure, each category is assigned an 
activation value that is high for small distances, low for large distances: 

d(c) 
A(c, t) = 1 -d(O) + d(l) + d(2) 

After the window has been shifted over all 15 frames, the activations 
obtained at each window position are summed, for each category. The category 
with the highest overall activation is chosen as the recognized category. Note 
that these activation calculations are not done using additional layers of 
connections: our system is essentially a one layer system. 
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Figure 2. System architecture, /b/, /d/, /g/ task 
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4. Experiments 

4.1. Speech Data Representation and Database 

To be fair in our comparison with the TDNN system, we used exactly the 
same data representation as that used in TDNN . One phoneme token consisted 
of 15 time frames of 16 melscale spectrum channels, with a frame rate of 10 
msec. Input speech was sampled at 12 kHz, hamming windowed, and a 256-
point FFT computed every 5 msec. Melscale coefficients were generated from the 
power spectrum and coefficients adjacent in time were collapsed, yielding an 
overall frame rate of 10 msec. The coefficients were then normalized between 1.0 
and -1.0 with the average at 0.0. Figure 2 displays these coefficients as black or 
white squares of varying sizes, size representing magnitude, black for positive 
values, white for negative values. 
These tokens were drawn from a database of about 5230 common Japanese 

words, uttered in a sound-proof booth by a male professional announcer. This is 
the same database as used in the TDNN experiments. The database was split into 
a training set and a testing set of 2615 utterances each, from which the phoneme 
tokens were then extracted using manually selected acoustic-phonetic labels. For 
consonant tokens, the center frame was set at the border between the consonant 
and the following vowel. For vowels, the center frame of each token was set at 
the center position of the vowel. This extraction procedure is identical to that 
used in the TDNN experiments. In effect, the tokens we used for both training 
and testing of the system were identical to those used in TDNN. 

4.2. System Configuration 

One of the reasons L VQ2 learns fast is that the initial conditions start out 
fairly well. Whereas Back-propagation networks are typically initialized by 
setting the weights to small random values, the reference vectors in L VQ2 can 
be initialized by, performing K-means clustering, as mentioned above. The 
method most in line with LVQ theory, and recommended by Kohonen [1], 
would be to perform K-means clustering on the training tokens for all 
categories, and then assign category labels to the resulting reference vectors. A 
faster and simpler method is simply to perform K-means clustering on the 
training tokens for just one category at a time. This method was found by Yokota 
et al.[8] to provide an initial system performance that is as good or better than 
that resulting from a variety of initialization methods, including the first 
method described here. We should mention, though, that performance after 
L VQ training is not significantly altered by these different initialization 
methods. Even very crude methods, such as using randomly selected training 
tokens to initialize the reference vectors, produce fairly good initial 
performance, and very high performance after L VQ training. In sum, adequate 
initial conditions can easily be found for LVQ reference vectors. These initial 
vector positions are not the optimal positions, but they place the reference 
vectors in the right general area. This, it seems, plays a key role in reducing 
training time. 
One question is how to determine the appropriate number of reference 

vectors. What should the total number of vectors be, and how many of these 
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vectors should be assigned to each category? As to the first question, it seems 
clear that a large number of reference vectors can in general only help 
performance. However, there is a point at which the performance no longer 
increases significantly (or at all) with increases in the number of reference 
vectors. By setting the number of reference vectors such that the system is at this 
point of diminishing returns, we retain near-optimal performance while 
keeping the number of reference vectors low. 
As to the second question, how many reference vectors should be 

assigned to each category, the theoretically sound method is perhaps to assign 
vectors in proportion to the class probabilities, P(c); this is the method 
reccomended by Kohonen [1]. However, we have found that a broad range of 
choices leads to essentially the same performance. 

4.3. Recognition of /bl, /di, lgl 

As a first step in the evaluation of LVQ1 and LVQ2, we applied our 
system to the /b/, /d/, /g/ task. For this task we were able to obtain an overall 
recognition rate of 99.2% for 658 testing tokens (open test) from one speaker. 
We implemented our system on an 8-processor Alliant super mini-

computer. The simple vector operations that constitute the core of LVQ allowed 
for very easy parallelization and thus high learning speed. Furthermore, the 
initial conditions start out well, so the required number of trials is not 
particularly large. Thus, for LVQ2 on the /b/, / d/, / g/ task, a recognition rate of 
98~99% can be attained in about one minute of CPU time, corresponding to 5 
epochs of training (one epoch = one full presentation of the training set). 

4.4. Evaluation of K-means, L VQl and L VQ2, on the /bl, /d/, /g/ task 

K-rneans clustering is a very powerful method for vector quantization, 
and it provides an effective way of initializing L VQ reference vectors. However, 
the goal of K-rneans is not to reduce the number of rnisclassifications in a 
discrimination task, but to reduce the average distortion of a vector quantizer. 
The two goals may overlap, but are not identical; achieving one of these goals 
may well be at the expense of the other. To investigate this issue, we considered 
the difference in classification performance between L VQ and K-rneans 
clustering, on the /b/, /d/, /g/ task, for different numbers of reference vectors 
ranging from 15 to 300. Here each category was allotted reference vectors in 
proportion to the number of training samples available for that category. For 
each point in the plot, K-means was run on four different sets of initial reference 
vectors (sampled at random from the training set). Using the best of these four 
runs as the starting configuration, both versions of LVQ learning were 
performed. For a given initial configuration, LVQ2 was performed just four 
times, with exactly the same parameter settings, the only difference thus being 
the order of presentation of training tokens. L VQ1, on the other hand, required 
more exploration of the parameter space to improve on the performance of the 
initial configuration. Figure 3 shows, for each choice of total number of 
reference vectors, the test data performance for the best of the four K-means 
runs, and for the best of the L VQ training runs. This figure illustrates the 
previosuly mentioned asymptotic behavior of LVQ as the number of reference 
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vectors is increased. We also see that LVQ nearly always does better than K-
means, and that the difference in performance is accentuated for small numbers 
of reference vectors. These aspects are particularly visible for LVQ2. To achieve a 
performance of around 98%, 9 reference vectors are sufficient for LVQ2, while 
about 175 are necessary for K-means. 

＾ 苓ヽ
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且
~ 

゜-若~ 
切

8 
~ 

99 

94 

89 

84 

79 

74 

゜
100 200 

Total Number of Reference Vectors 

Figure 3. Performance vs. number of reference vectors, bdg task. 

4.5 Recognition of Phonemes in Other Phonemic Classes Using L VQ2. 

300 

Encouraged by these results for /b/, /d/ and /g/, we then applied our 
L VQ2 architecture to additional phoneme classes: the unvoiced stops, / p /, / t/, 
/k/; the nasals /ml, /n/, and syllabic nasals; the fricatives /s/, /sh/, /h/, /z/; the 
affricates / ch/ and /ts/; the liquids and glides / r /, / w /, / y /; and the vowels /a/, 
Ii/, lul, I el, I ol. Together, these constitute nearly the entire phoneme set for 
Japanese. The training set size for each of these classes was roughly the same size 
as the test set size, shown in Table 1. 
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L VQ2 networks for each of these phonemic classes were initialized using 
K-means clustering and then trained in the same manner as described above. 
The test data recognition results for these phonemic classes are shown in 

Table 1. Here we are comparing our results with those of the TDNN system [3], 
[4]. Note that each network here is only trained to discriminate phonemes 
within one phonemic class, and thus does not know about phonemes from 
other classes. 
As can be seen, we obtained recognition results that are at least as good as 

those obtained in the TDNN system. Furthermore, all of these tasks required 
relatively little training time in the LVQ2 system. We do have a problem with 
the phoneme /p/: due to the very infrequent occurence of /p/'s in Japanese, our 
training data is not sufficient to produce good generalization. 
Most of these networks did not achieve perfect recognition of the training 

data. The training data performance was typically in the high 99% range. 
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LVQ2 k-means TDNN 
task #errors/ 
#tokens %correct total% total% total% 

b 2/227 99.1 
d 0/179 100 99.2 78.7 99.0 
g 3/252 98.8 
p 6/15 60.0 
t 0/440 100 98.9 95.7 98.7 

k 5/500 99.0 
m 4/481 99.2 
n 7/265 97.4 98.8 83.7 96.6 
N 4/488 99.2 
~ 4/538 99.3 
sh 0/316 100 
h 0/207 100 99.4 98.8 99.3 

z 3/115 97.4 
ch 0/1四 100 
ts 0/177 100 100 100 100 

r 0/722 100 
w 1/78 98.7 99.6 99.2 99.9 
y 3/174 98.3 
a 0/600 100 ． 
2/600 99.7 1 

u 14/600 97.7 99.1 96.7 98.6 
e 6/600 99.0 

゜
4/600 99.3 

Table 1. Test data recognition rates for small phonemic tasks. 
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4.6 Recognition of All Japanese Consonants Using L VQ2 

We next built an LVQ2 network that can discriminate among all Japanese 
consonants, not just within small phonemic classes. This network, illustrated in 
Figure 4, has the very same architecture as the small networks above, but with 
more categories. As before, the network is initialized using K-means clustering, 
and then trained using L VQ2. 
First, to compare this LVQ2 network with its TDNN counterpart [4, 9], we 

used the very same training and testing sets used in TDNN. The training set 
consisted of 5,063 tokens; the testing set consisted of 3061 tokens. For these data 
sets, our system architecture, initialized using K-means, recognizes 92.4% of the 
test data correctly; after LVQ2 training, the overall performance is 97.1 %. This is 
compared with the best TDNN result for the all-consonant task, 96.7%. 
Next, we trained and evaluated the all-consonant LVQ2 network using 

larger data sets. In TDNN, for reasons that we will not discuss here, the data sets 
for very frequently occurring phonemes were limited to 500 or 600 tokens (e.g. 
for k and the vowels). To be fair in our comparison, all the results presented so 
far used the same limited data sets. However, our purpose here is not solely 
comparison with TDNN, and we wanted to see how an all-consonant L VQ2 
network performs using all the available tokens for each phoneme. Accordingly, 
our next step was to train an L VQ2 network using a full training set of 5,973 
tokens, and evaluate it with a full testing set of 5,960 tokens. As expected, 
performance increases with additional training data. The overall performance 
here is 97.7%. 
These results are summarized in Table 2. As to recognition of training 

data, for the first network, trained on the limited data set, the performance was 
99.3%, while for the network trained on the full data set, the performance was 
99.4%. 
Training each network here required about 10 ~ 30 epochs in all, resulting 

in about 2 or 3 hours of CPU time: substantially more than for the small 
networks but still reasonable. 
For the all-consonant results presented here, each category was assigned 

25 reference vectors. Our experience suggests a picture very similar to that 
detailed above for the /b/, /d/, /g/ network: above a certam total number of 
reference vectors, performance ceases to improve. 
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Data Set LVQ2 K-means TDNN 

Limited 97.1% 92.4% 96.7% 

Full 97.7% 91.5% 

Table 2. Recognition rates for all-consonant networks. 

5. Comparison with other L VQ Architectures 

To provide additional motivation for the architecture described and tested 
above, we here describe some of our findings for other architectures. First, two 
architectures that are not trained on time-shifted speech segments will be 
described and their performances reported. This is to suggest that training on 
shifted speech segments really does improve performance by adding a measure 
of shift-tolerance to the system. Second, we describe an architecture that is shift-
tolerant but uses a different recognition rule from the one described in Section 3. 
This is to note the importance of decision rules that integrate information over 
time. These architectures were evaluated on the all-consonant recognition task 
using the full training and testing sets mentioned above. The studies shown 
here are not intended to be exhaustive descriptions of all the possible 
architectures, but rather to illustrate the key features of the architecture we are 
focussing on in this paper (in the following sections, the "main" architecture.) 

5.1. Two Shift-Sensitive Architectures 

One very simple alternative to training the system on shifted speech 
segments is simply to train using input vectors generated from the whole token, 
i.e. vectors of 240 dimensions, corresponding to the full 15 frames of 16 FFT 
coefficients. This is the basis for the first shift-sensitive architecture, illustrated 
in Figure 5. As above, each category was associated with a number of reference 
vectors, and the L VQ training procedure was applied to these 240 dimensional 
training vectors. Recognition is simply done by presenting an input vector and 
finding the class of the closest reference vector. 
Twelve reference vectors were assigned to each class, corresponding to 

roughly the same number of parameters as used in the shift-tolerant system for 
all-consonant recognition, which used 25 reference vectors for each class, but 
where the vectors had fewer dimensions. As above, K-means was performed, 
resulting in an initial test data performance of 90.4% for the all-consonant task. 
Trained on the full data set for the all-consonant task, this architecture yielded a 
performance on training data of 98.9%, and a test data performance of 94.7%. 
This is in contrast to the main architecture, which had a training data 
performance of 99.4% and a test data performance of 97.7%, as described above. 
Thus in comparison to the main architecture, this shift-sensitive architecture 
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suffers from a much greater drop between performance on training data and 
performance on test data. 
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The drop in test data performance just described seems clearly related to 
the shift-sensitive nature of the architecture. However, it is conceivable that the 
difference in performance, compared to that of the main architecture, is due to 
the difference in dimensionality (112 dimensions in one architecture, 240 in the 
other), and not to an inherent advantage in training on shifted speech segments. 
To try to separate the effect of dimensionality from that of training on time-
shifted patterns, we examined the effect of using essentially the same shift-
sensitive architecture, but this time limiting the token size to 7 frames--i.e. the 
same window width as in the main architecture. These short tokens were taken 
from the central 7 frames of the usual 15 frame tokens. Since the consonant 
tokens have been hand-aligned such that the transition point between 
consonant and vowel occurs close to the center position, these 7 frame tokens 
contain very useful information concerning the token's phonemic identity. 
This network is shown in Figure 6. As above, we used the same number 

of parameters as for the main architecture's all-consonant net, i.e. 25 reference 
vectors per class. K-means initialization resulted in 91.6% recognition 
performance on test data; L VQ2 training resulted in training data performance 
of 99.2%, and test data performance of 93.8%. Once again, compared to the shift-
tolerant architecture, we see a significantly bigger drop between performance on 
training data and performance on test data. 
For both shift sensitive architectures described here, increasing the 

number of reference vectors did not improve performance significantly. 
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 5.2. A Different Recognition Rule 

Aside from training reference vectors on shifted speech segments, the 
other salient feature of the main architecture is the recognition rule. In the 
recognition phase, as described above, we shift the 7 frame window over the 
token, generate category activations for each position of this window on the 
token, and sum activations over time to generate final activations for each 
category. The particular method we employed to integrate information over 
time is just one choice out of many possible choices; examination of a variety of 
similar recognition rules revealed essentially no differences in performance. 
The key feature seems to be that the recognition rule integrates information 
over all the positions of the time-shifted window. To illustrate this point, we 
here describe a recognition rule that does not integrate information over time in 
this way, and which thus leads to a drop in performance. 
The basic recognition rule in・L VQ is simply to find the nearest neighbour 

among all the reference vectors. In this spirit, one possibility for a recognition 
rule in our phoneme recognition system is as follows. First, shift the window 
over the token, recording, for each position, the distances between input vectors 
and closest reference vectors. Once the window has been fully shifted over the 
token, choose, among all these distances, the smallest one, and the reference 
vector corresponding to it. The category of that reference vector alone is then 
given as the categorization of the whole token. This network is shown in Figure 
7. 
To test this rule, we used the same set of reference vectors that generated 

the 97.7% test data recognition on the all-consonant recognition task above, 
using the main shift-tolerant architecture. No additional training was 
performed on these vectors, they were used only in the recognition phase, 
during which the new rule was used instead of the summation of activations. 
Applied to the all-consonant task, 25 reference vectors per class, this recognition 
rule yielded a performance of 84.5% after K-means initialization. Performance 
after L VQ2 training was 98.8% for training data and 95.0% for test data. Here 
again, we see a relatively larger drop between performance on training data and 
performance on test data, compared to the main architecture presented here. 
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6. Discussion 

Our results suggest that LVQ, particularly in its LVQ2 version, is an 
extremely powerful classifier, comparable or even slightly superior in ability to 
Back-propagation. 
Clearly, from the viewpoint of classifier performance, both LVQl and 

L VQ2 are more powerful than K-rneans clustering. As suggested above, this is 
due to a difference in goals between L VQ and K-rneans clustering. K-means does 
not attempt to generate optimal decision lines in a categorization task; similarly, 
LVQ is not meant to minimize distortion. As our interest here is phoneme 
recognition accuracy, within the framework of the recognition system presented 
here, the LVQ algorithms are more appropriate than K-means clustering. 
We saw above that with large numbers of reference vectors, LVQ and K-

means have about the same performance. However, the fact that LVQ can 
achieve extremely high performance even with small numbers of reference 
vectors seems quite significant. The goal of vector quantization is to reduce data 
from a large number of training vectors to a small number of reference vectors. 
For the purposes of our phoneme recognition system, L VQ achieves this goal 
more fully. Furthermore, even for large numbers of reference vectors, LVQ 
performs slightly better than K-means. 
しVQ2seems clearly more powerful than LVQl in terms of ability to 

approximate optimal decision lines. Both algorithms use the same principle, of 
pushing incorrect vectors away and pulling correct vectors closer, but the 
manner in which this process is controlled in L VQ2 allows for much more 
careful adaptation of the decision boundaries in the task. 
We have throughout mentioned that LVQ is a very fast algorithm, 

mainly due to the very good initial conditions obtained using K-means 
clustering. At the time of the TDNN implementation in [3], it took 4 days for 
TDNN to learn /b/, /d/, lg/. Thus the minute or so required for LVQ2, on the 
same computer, seemed to compare quite favorably. Recently, however, Haffner 
et al. [9] have achieved tremendous speed-ups for TDNN, such that we can no 
longer claim speed as a decisive advantage over TDNN. However, it still seems 
fair to say that LVQ, in its basic form, is faster than Back-propagation in its basic 
form. 
We should mention that our LVQ networks are significantly bigger than 

their corresponding TDNNs, by a factor ranging from about 4 to about 13. 
Training speed is nonetheless very fast, and recognition of a single token is still 
done in better than real time. We should note that the architecture we present 
here is undoubtedly not the optimal LVQ architecture for phoneme recognition, 
and other architectures we are now considering may well allow for significantly 
smaller networks. Another point is that as a vector quantizer, LVQ is open to 
the many existing techniques for editing out unnecessary vectors, as well as for 

finding the closest vector in logarithmic time2 . 
We find the simplicity of the learning rule quite appealing. It involves no 

calculations of sigmoid functions or derivatives, the main calculation being that 

2 Although one concern is that the high dimensionality of the vectors used 
here may limit the effectiveness of these methods. 
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for finding the Euclidean distance between two vectors, which is very easy to 
implement and parallelize. 
The results reported for other LVQ based architectures suggest that 

training on shifted speech segments improves performance, especially 
performance on test data, quite significantly. The shifting window scheme 
means that it is not essential that the center frame of the phoneme be perfectly 
aligned with the center frame of the input layer for it to be correctly recognized. 
This is quite an important property, as we cannot reasonably expect databases to 
be so accurately labelled. Another advantage of the shifting window scheme is 
that training on shifted segments in a way results in an expansion of the 
training data, which might be beneficial. 
Finally, the results for an LVQ system with a different recognition rule 

provide some motivation for the main recognition rule presented here. 
Although very simple, this recognition rule seems to be able to integrate 
information over time so as to provide a more robust decision than that 
obtained by using only one reference vector to identify a whole token. 

7. Conclusion 

Our results indicate that LVQ can be the basis of a simple but very 
powerful shift-tolerant classifier for phoneme recognition. Our L VQ based 
system achieved recognition rates in the 98%-99% correct range for 7 Japanese 
phonemic classes, and a recognition rate of nearly 98% for all Japanese 
consonants. Our results compare favorably with those obtained in the TDNN 
system developed by Waibel et al.[3]. 
On the whole, L VQ seems to be endowed with great simplicity, speed, and 

powerful classification ability. Furthermore, since LVQ is a vector quantizer, it is 
open to the many techniques already developed for VQ sy$tems in speech 
processing, such as speaker adaptation and Dynamic Time Warping. It could also 
be used in combination with Hidden Markov Models; one very simple 
possibility is simply to use LVQ to generate the HMM codebook. Thus, it seems 
that the L VQ system we present here could be extended to serve as the basis for a 
successful speech recognition system. 
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