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Abstract 

We proposed that the trajectory followed by human subject arms tended 

to minimize the time integral of the square of the rate of change of torque 

(Uno, Kawato, Suzuki, 1987). This minimum torque-change model pre-

dicted and reproduced human multi-joint movement data quite well (Uno, 

Kawato, Suzuki, 1989). Here, we propose a neural network model for trajec-

tory formation based on the minimum torque-change criterion. Basic ideas 

of information representation and algorithm are (i) spatial representation 

of time, (ii) learning of forward dynamics and kinematics model and (iii) 

relaxation computation based on the acquired model. Operations of this 

network are divided into the learning phase and the pattern-generating 

phase. In the learning phase, this network acquires a forward model of 

the multi-degrees-of-freedom controlled object while monitoring the actual 

trajectory as a teaching signal. In particular, it learns a vector field of 

the ordinary differential equation which describes the dynamics of the con-

trolled object. Correspondingly, the network structure is a cascade of many 

identical network units, each of which approximates the vector field. In the 

pat tern-generating phase, electrical couじlingしetweenneurons representing 

motor commands at neighboring times 1s activated to guarantee the mini-

mum torque-change criterion. The network changes its state autonomously 

by forward calculation through the cascade structure, and by error back-

propagation based on the acquired model. At the stable equilibrium state 

w~tし minimum energy, the network outputs the torque which realizes the 
mm1murn torque-change trajectory. The model can resolve ill-posed in-

verse kinematics and inverse dynamics problems for redundant controlled 

objects as well as ill-posed trajectory formation problems. By computer 

simulation, we show that the model can produce a multi-joint arm trajec-

tory while avoiding obstacles or passing through via-points. 
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1. Introduction 

B邸 edon the pioneering work by Saltzman (1979), we (Kawato, Furukawa, Suzuki, 

1987) proposed a computational model for control of voluntary movement which 

accounts for Marr's (Marr, 1982) first level of understanding complex information-

processing systems: i.e., computational theory. In this model, three sets of infor-

mation are assumed to be internally represented in the brain, that is, a desirable 

trajectory in task-oriented coordinates, a desirable trajectory in body coordinates 

and a motor command. Computations which derive these three sets of information 

are called a trajectory formation problem, a coordinate transformation problem and 

a motor command generation problem, respectively. The second and the third prob-

lems are called the inverse kinematics problem and the inverse dynamics problem in 

robotics literature. 
As explained in Kawato et al. (1987) and Kawato (1989), several lines of experi-

mental evidence suggest that the three sets of information are internally represented 

in the brain. For example, Bizzi, Accornero, Chapple and Hogan (1984) reported 

experiment results which indicate that the desired trajectory is explicitly planned in 

the brain. When the forearm of a deafferented monkey was quickly forced to the 

target position early in the movement, the arm returned to some intermediate point 
between the initial and final target positions, then gradually approached the final po-

sition again. A trajectory which connects the above intermediate points for various 

times of perturbation can be regarded as the desired, planned trajectory. 

In this paper, we propose a neural network model which solves the three problems 

(trajectory formation, coordinate transformation and generation of motor command) 

at the same time. An input to the network is a goal of movement, such as a desired 

end point, a desired via-point, and locations of obstacles to be avoided , which are 

expressed in task-oriented coordinates, and a movement time. The output from the 

network is a motor command. This network can be regarded as one example of 

endogenous motor pattern generators such as a neural oscillator for rhythmic move-

ments. The network internally estimates the desired trajectory in the task-oriented 

coordinates as well as the desired trajectory in the body coordinates. However, they 

are not essential in feedforward motor control. Consequently, a computational scheme 

adopted in this neural network model obtains the motor command directly from the 

goal of movement. In our previous papers (Kawato et al., 1987; Kawato, Isobe, 

Maeda, Suzuki, 1988), we proposed step-by-step computational schemes, where the 

three computational problems are solved step by step, as well as the above direct 

computational scheme. The model proposed here is assumed to be used for very 

skilled movements, while the step-by-step computations are utilized for relatively 

difficult or less skilled movements. This point will be discussed later in connection 

with behavioral observations of motor learning in human arm movements. 

A problem is well-posed when its solution exists, is unique and depends contin-

uously on the initial data. Ill-posed problems fail to satisfy one or more of these 

criteria. Most motor control problems are ill-posed in the sense that the solution is 

not unique. 
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We list three ill-posed control problems in Fig. 1..1. First, consider the trajectory 
determination problem for a planar, two-joint arm movement within a plane, when 

the starting point, the via-point and the end point, as well as the movement time, 

are specified (Fig. 1. .1, top). There are an infinite number of possible trajectories 
satisfying these conditions. Thus, the solution is not unique and the problem is 

ill-posed. 

The second ill-posed problem is the inverse kinematics problem in a redundant 

manipulator with excess degrees of freedom. For example, consider a three-degrees-of-
freedom manipulator in a plane (Fig. 1..1, middle). The inverse kinematics problem 

is to determine the three joint angles (three degrees of freedom) when the hand 

position in the Cartesian coordinates (two degrees of freedom) is given. Because of 

the redundancy, even when the time course of the hand position is strictly determined, 

the time course of the three joint angles can not uniquely be determined. We note 

that human arms have excess degrees of freedom. 

The third ill-posed motor control problem is the inverse dynamics problem in 

a manipulator with agonist and antagonist muscles (actuators). Consider a single 

joint manipulator with a pair of muscles (Fig. 1..1, bottom). The inverse dynamics 

problem is to determine the time courses of agonist and antagonist muscle tensions 

when the joint angle time course is determined. Even when the time course of the 
joint angle is specified, there are an infinite number of tension waveforms of the two 

muscles which realize the same joint angle time course, as indicated by solid and 

broken curves in Fig. 1..1, bottom. 

Jordan (1988) clearly explained why the widely studied direct inverse modeling 

neural network approach (Albus, 1975; Miller, 1987; Miller, Glanz, Kraft, 1987; 

Kuperstein, 1988; Atkeson, Reinkensmeyer, 1988) is inadequate for resolving ill-posed 
inverse kinematics problems. 

There are two different approaches which resolve these ill-posed problems. One 

approach is to utilize a feedback controller. The feedback controller selects one spe-

cific motor command in the inverse dynamics and inverse kinematics problems even 

for redundant manipulators. But the desired trajectory can not exactly be realized 
by feedback control alone. The feedback error learning approach proposed in Kawato 

et al. (1987) can resolve ill-posed inverse kinematics and inverse dynamics problems 

because of the above mentioned good characteristics inherent in the feedback con-

troller. We showed that the feedback error learning network can accurately realize 

the desired trajectory expressed in Cartesian coordinates for a three-link manipulator 

within a plane (Kano, Kawato, Suzuki, 1989). The selected joint angle time courses 
depended on the initial posture of the manipulator and the gains of the feedback con-

troller. The kinematic net proposed by Mussa-Ivaldi, Morasso and Zaccaria (1988) 

is essentially the feedback control approach and deals with the inverse kinematics 

(static) problem. 

Another approach is to introduce a smoothness performance index. Here, we 
briefly explain two experimentally confirmed objective functions for voluntary move— 

ments. The most marked and beautiful experiment features of human multi-joint 
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Figure 1..1: Three ill-posed problems in sensory-motor control. 
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arm movements between two points are roughly straight hand paths and bell-shaped 

hand tangential speed profiles (Morasso, 1981; Abend, Bizzi, Morasso, 1982; Atke-

son, Hollerbach, 1985; Flash, Hogan, 1985; Uno, Kawato, Suzuki, 1989). In order to 
account for such kinematic features of human multi-joint arm movements, Flash and 
Hogan (1985) proposed a mathematical model, the "minimum jerk model". They 

proposed that the trajectory followed by the subject's arms tended to minimize the 

following quadratic measure of performance: the integral of the square of the jerk 

(rate of change of acceleration) of the hand position (X, Y), integrated over the entire 

movement. 

CJ= 1/2 fo。り｛（岱＋（皇）2}dt. (1.1) 

Here, (X, Y) are Cartesian coordinates of the hand, and t 1 is the movement duration. 

Flash and Hogan showed that the unique trajectory which yielded the best perfor-

mance was in good agreement with the experiment data on movement within the 
region just in front of the body. Their analysis was based solely on the kinematics 

of movement, independent of the dynamics of the musculoskeletal system, and was 

successful only when formulated in terms of the motion of the hand in extracorporeal 

space. 

Based on the idea that the objective function must be related to the dynamics, 

Uno, Kawato and Suzuki (1987) proposed the following alternative quadratic measure 
of performance: 

CT= 112 fot宮誓）2dt, (1.2) 

here, ヂisthe torque fed to the ith of m actuators. The objective function is the sum 

of the square of the rate of change of the torque, integrated over the entire movement. 

One can easily see that the two objective functions, C1 and CT, are closely related. 
However, it must be emphasized that the objective function CT critically depends on 

the dynamics of the musculoskeletal system. 
For the movements between pairs of targets just in front of the body, predictions 

of both the models were in good agreement with the experiment data. However, the 

trajectories predicted by the minimum torque-change model were quite different from 

the minimum jerk model in four behavioral situations. In one situation, past exper-

iment data support the minimum torque-change model (see below). The rest three 
of the situations were not examined in past experiments. Uno et al. (1989) in recent 

experiments examined human planar arm movement in three different situations and 

found that the minimum torque—change model predicted the real data better than 
the minimum jerk model. 

First, when the starting point is an arm outstretched to the side and the end 

point is in front of the body, the path was curved in the minimum torque-change 

model, but always straight in the minimum jerk model. The hand paths of 16 human 
subjects were all curved. 

Second, consider movements between two points while resisting a spring, one 

end of which is attached to the hand while the other is fixed. The minimum jerk 
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model always predicts a straight path regardless of the external forces. On the 

other hand, the minimum torque-change model predicted a curved trajectory and an 

asymmetrical speed profile for the movement with the spring. These predictions are 

in close agreement with experiment data. 

Third, we examined vertical movements which are affected by gravity. The min-

imum jerk model always predicts a straight path between two points. On the other 

hand, the minimum torque-change model predicted curved paths for large up and 

down movements, roughly straight paths for small fore and aft movements. The 

speed profiles were bell-shaped for both movements. These predictions are in close 

agreement with experiment data of Atkeson and Hollerbach (19_85). 
Finally, the most compelling evidence is about a pair of via-point movements. 

Consider two subcases, with identical start and end points, but with dictated mirror-

image via-points. If one notices invariance of the objective function CJ of the min-
imum jerk model under translation, rotation and rolling, it is easy to see that the 

minimum jerk model predicts identical paths with respect to rolling as well as iden-

tical speed profiles for the two subcases. On the other hand, the minimum torque-

change model predicts two different trajectories. For the concave path, the speed 

profile has two peaks. However, for the convex path, the speed profile has only one 

peak. These predictions are in close agreement with the human data (Uno, Kawato, 

Suzuki, 1989). 
Summanzmg these comparisons, the trajectory derived from the minimum jerk 

model is determined only by the geometric relationship of the initial, final and in-

termediate points, whereas the trajectory derived from the minimum torque-change 

model depends not only on the relationship of these three points but also on the arm 

posture (in other words, the relative location of the shoulder for the three points), 

and external forces. 

The mm1mum jerk model formulated in the task-oriented coordinates can not 

resolve the ill-posed inverse kinematics and inverse dynamics problems for redundant 

manipulators. The feedback control approach can not resolve the ill-posed trajectory 

formation problem in spite of the early hypothesis of the end point control (see Bizzi 

et al., 1984). However, the minimum torque-change model can resolve all three ill-

posed problems shown in Fig. 1..1 at the same time when the locations of the desired 

end point, desired via-points and obstacles are given in task-oriented coordinates. 

If we adopt the minimum torque-change model as a computational scheme, it 

leads to two important conceptual assumptions. First, the brain needs to acquire, by 

training, an internal model of the dynamics and kinematics of the controlled object 

and continuously utilize it for trajectory formation. Second, the brain must solve the 

three problems simultaneously. 

The purpose of this paper is to propose a neural network model which, based on 

the minimum torque-change criterion, coherently resolves all three ill-posed problems 

shown in Fig. 1..1. The minimum torque-change criterion is embedded as hardware 

(electrical synapses) in the neural network model. The neural network model first 

acquires a forward dynamics model of a controlled object by training and then cal-
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culates the motor command by relaxation computation utilizing the learned forward 

dynamics model. In a sense, the network first learns the energy to be minimized, and 

then minimizes the learned energy. 

The minimum torque-change model is (i) a computational model for the trajec-
tory formation problem. The neural network model proposed in this paper provides 

understanding on the (ii) representation and algorithm level, and (iii) hardware level, 

for the same problem. We believe that the most important proposition in Marr (1982) 

is the need to connect understanding at three levels, rather than to stick to one of 

the three levels, even the computational level. 

It is possible for two different neural network structures to acquire the forward 

dynamics and kinematics model of a controlled object. Previously, we proposed a 

four-layer model, which learns the flow of a dynamical system describing the con-

trolled object (Maeda, Kawato, Uno, Suzuki, 1988; Kawato, Uno, Isobe, Suzuki, 

1988; Uno, Kawato, Maeda, Suzuki, 1988). In this paper, we expand the previous 

model and propose a model which learns the vector field of the dynamical system 

instead of the flow. Accordingly, the network has a cascade structure made up of 

many repetitions of a network unit which approximates the vector field. We show 

computer simulations of trajectory formation while passing through via-points or 

avoiding obstacles. We will discuss possibilities of using the proposed neural network 

model for continuous speech recognition, as was first hypothesized in "motor theory 

of speech perception" (Liberman, Cooper, Shankweiler, Studdert-Kennedy, 1967). 

2. Information representation and algorithms 

In this section we explain information representation and basic algorithms of our 
neural network model. 

Since the dynamics of the human arm or a robotic manipulator is nonlinear, find-

ing the unique trajectory which minimizes CT is a nonlinear optimization problem. 

Accordingly, it is much more difficult to determine the unique trajectory which min-

imizes CT than to find the minimum jerk trajectory. Uno et al. (1987) overcame 

this difficulty by developing an iterative scheme, so that the unique trajectory and 

the associated motor command (torque) could be determined simultaneously. Math-

ematically, the iterative learning scheme can be regarded as a Newton-like method in 

a function space. The central nervous system does not seem to adopt this algorithm 

in trajectory formation. 

It was reported that some neural network models can solve computationally dif-

fl.cult problems such as the traveling salesman problem (Hopfield and Tank, 1985) 
or early visions (Poggio, Torre, Koch, 1985; Koch, Marroquin, Yuille, 1986). These 

computational problems can be regarded as nonlinear optimization problems with 

some constraints. The neural network models solve these problems by minimizing 

specific cost functions (energy) through dynamical changes of their state variables. 

Because of the success of the minimum torque-change model, the problem of tra-

jectory formation can also be regarded as a nonlinear optimization problem with a 

constraint given as the nonlinear dynamics of the controlled object. 

直
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Let us mathematically formulate the trajectory formation problem on the mini-

mum torque-change criterion. First, forward dynamics and inverse dynamics prob-

lems are defined. 0 denotes an n-dimensional vector which represents _the body coor-

din ates, such as joint angles or muscle lengths, of a controlled object. 0 represents the 
corresponding velocity vector. r represents an m-dimensional vector of motor com-

mands such as joint torques or muscle tensions. The state change of the controlled 

object is described by the following ordinary differential equations. 

d0/dt = 0 

匈dt = f (0, iJ , r) , (2.1) 

here f is an n-dimensional nonlinear vector function. The forward dynamics problem 
is to find the body space trajectory (0(t), 0(t)) when the motor command r(t) is given. 

Conversely, the inverse dynamics problem is to find the motor command r(t) which 
realizes a given trajectory (0 (t), 0 (t)). The forward dynamics can be conveniently 

expressed by the following flowゆ： Rx R2n X RmR--+ R2n of the dynamical system 

2.1: 

(0(t), 0(t)) =ゆ(t;(0(0), 0(0)); r(-)), (2.2) 

here r(・) represents the time course of the motor command. 

Second, the forward kinematics and inverse kinematics problems are defined. x 

denotes a k-dimensional vector representing the task-oriented coordinates of the con-

trolled object, for example, the Cartesian coordinates of the hand position or the 

retinal coordinates of a grasped object. x is uniquely determined from 0 according 

to the following nonlinear equation: 

む=G(0), (2.3) 

here G is a k-dimensional nonlinear vector function. The forward kinematics is 

to determine x from 0 based on the above equation. The inverse kinematics is to 

compute 0 from x. As explained in Fig. 1..1, if n > k, then a-1 does not generally 
exist since there are many 0s which lead to the same x. 

Two kinds of constraints are imposed on the movement. The first constraint 

which must be rigorously satisfied is called a hard constraint. The second constraint 

which requires smoothness of the movement with the lower priority is called a soft 

or smoothness constraint. Hard constraints for the movement are given as follows: 

x(O) = x。 (2.4) 

x(O) = Vo (2.5) 

ェ（り）＝町 (2.6) 

x(り）＝町 (2.7) 

x(ivia) =叩ia ; 0 < ivia < t f (2.8) 

叫） (/: rt C Rk ；〇 ~t~tf. (2.9) 

The first two equations specify the initial conditions at the starting point. The third 

and fourth equations specify the terminal conditions at the end of the movement, 
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t J・The fifth equation is the condition of passing through the via-point. The time 

ivia when the via-point must be passed may or may not be specified. The sixth 

equation requires avoidance of obstacles whose locations are given as a subset O in 
the task state space Rk. The first four conditions are always given, but the last 
two conditions are not always given. Please note that all of these conditions are 

given in task-oriented coordinates. However, for a redundant controlled object it is 

sometimes more convenient to express the fourth condition in body coordinates as 
we will discuss later. 

遍

Definition 1 The trajectory formation problem based on the minimum torque change 

criterion is to find r(t) for O~t :S i1 which minimizes the objective function C分1.2
among those which satisfy the dynamics equation 2.1, the kinematics equation 2.3 

and the movement conditions 2.6, 2. 7, 2.8, 2.9. 

Basic ideas of information representation and an algorithm of our neural network 

model are (i) spatial representation of time, (ii) learning of the forward dynamics 

and kinematics model and (iii) relaxation computation based on the acquired model. 

These three ideas are schematically illustrated in a 5-layer neural network model of 

Fig. 2 .. 1. The motor command r(t), the body space trajectory (0(t), 0(t)), and the 

task space trajectory (x(t), x(t)) at different times j△ t with a fixed time step△ tare 

distributed throughout the network. So, for example, a single neuron is allocated to 

represent the ith component of the motor command弓＝ぞ(j△t) at time j△ t. The 

movement time is divided into N steps (t 1 = N△ t) and tvia = L△ t. In other words, 
time is represented spatially. Consequently, a delay line is required to transmit the 

spatially represented motor command time course to a controlled object. 

In the learning phase, the neural network acquires a forward dynamics and kine-

matics model of the controlled object, within a multi-layer feedforward (MLFF) struc-

ture. The MLFF structure consists of an input layer (the first layer in Fig. 2 .. 1) which 

represents the motor command, an intermediate layer (the third layer in Fig. 2 .. 1) 

which represents the body space trajectory, and an output layer (the fifth layer in 

Fig. 2 .. 1) which represents the task space trajectory, and other hidden layers (the 

second and fourth layers in Fig. 2 .. 1). Between the motor command layer and the 

body space layer, an internal model of the forward dynamicsゆ， eq.2.2 is acquired 

by training. Similarly, between the body space layer and the task space layer, an 

internal model of the forward kinematics G, eq. 2.3 is acquired by training. The 

hidden layers provide necessary nonlinear transformations for approximating nonlin-

ear forward dynamics and forward kinematics. The network as a whole provides a 

nonlinear mapping F from the motor command r to the task space trajectory (x, x). 
F is a composite function G・ ゆ．

One of the most attractive features of the MLFF structure is that the network 

can calculate the partial derivative o(x, x)/or = 8F(r)/8r in parallel using learned 
synaptic weights based on the error back-propagation algorithm (Rumelhart, Hinton, 

Williams, 1986; Werbos, 1988), once it acquires the mapping F. In the pattern 

generating phase, the network performs relaxation computation utilizing this partial 

量
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derivative. Biologically more plausible learning algorithms, such as the associative 

reward-penalty learning of Barto and Anandan (1985), could be used to attain the 

same task. 
A total energy E of the network is defined as a summation of a hard constraint 

energy En and a smoothness constraint energy Es multiplied by a regularization 
parameter入．

E=En+入Es. (2.10) 

The smoothness constraint term is simply a discrete version of the minimum torque— 

change criterion 1. 2: 
N m 

Es= 1/2区L(rj_lーサ）2 (2.11) 
j=l i=l 

The hard constraint energy is a summation of energy terms which correspond to the 

movement conditions 2.6, 2.7, 2.8, 2.9. 

ED = Ej + Evf +Evia+μE。b$t (2.12) 

局=1/2(町一 XNf(町一 z砂 (2.13) 

如=1/2(VJ―xNf(町ー祁） (2.14) 

Evia = l/2(xviaー互）T(叩iaー互） (2.15) 
N 

E。bst =区H(巧； n). (2.16) 
j=l 

Here, (xj, 屯） is a task space trajectory at time j△ t estimated by the neural network 

model from the learned mapping F and a time history of r. If the time the via— 

point must be passed is not specified, the time L△ t is chosen so that Evia is as its 

minimum (i.e. L is such that ¥:/j, I Xvia -XL l~I Xvia―Xj I). H is a non-negative 
function, which vanishes when屯 ¢D. H is differentiable in D. μis a positive, 
:fi nite sharpening parameter. For fast relaxation, μis first set =0 at the beginning of 
relaxation and slowly increased to 1 during relaxation. 

Relaxation of the motor command r(t) obeys the following equations. We in-
troduce a relaxation time s which is independent of the movement time t. So, 
吋＝ヂ(j△t), which represents the ith component of the motor command at the jth 
time, changes with the relaxat10n times. Here, i = 1, 2, • • •, m; j = 0, 1, • • •, N -1, N. 

T。- Tinit (2.17) 

T・dサ/ds -8E/的＝—8E叶的—入8Es/仇＇
□ -XN)乃応r/的＋（町一 xNfaxN/的+(x叫―互）T圧／的

N 

―μL8H(切；D)/仇.8叩／的＋入（土— 2吋＋か） (2.18) 
l=l 

j = 1, 2, ・ ・ ・, N -1 

吹 巧in, (2.19) 
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here Tinit and乃inare necessary motor commands to hold the starting and final 

postures. If gravitational or muscle forces are compensated for beforehand, these two 

boundary conditions are zero. T is a time constant of change of r. 

The first four terms of the relaxation equation 2.18 contain the partial derivative 

fJ(x,x)/析=fJF(r)/fJr. As mentioned earlier, they can be calculated by back-

propagation methods. Actually, if we regard x 1, v1 andぉviaas teaching signals 

to the estimated values of x N, x N and互， respectively,(町一 XN),(VJ―び） and 

(xvia -XL) equal the corresponding error signals at the output layer (see Fig. 2 .. 1). 

Then, it is straightforward to show that the first three terms of 2.18 are exactly 

the error signals at the input layer, which are calculated backward from the output 

layer. This also applies to the fourth term of 2.18 if we introduce an appropriate 

error signal for obstacle avoidance (see section 5.3 for detail). Consequently, we can 

rewrite equation 2.18 using error signals列backpropagated to the ith component 

motor command neuron at the jth time: 

T・dサ(s)/ds=号(s)+入(rj_1(s)-2サ(s)+ r]+1(s)). (2.20) 

Here, we note that 8j(s) = -8E叶的(s)and号(s)is a nonlinear function of弓(s).If 

r at some relaxation time s is determined, (0, 0) and x are determined by feedforward 

calculation of the network. Then the error signals at the output layers (x1― び(s))'

(VJ―XN(s)) and (xvia -xL(s)) at that instants are calculated. Finally, the error 

signals at the input layer号(s)at time s is calculated by backward propagation 

of errors. Then the motor command changes its state according to the relaxation 

equation 2.20. The variables other than the motor commands (i.e. body space 

trajectory, task space trajectory, error signals at the output layer, error signals at 

the input layer) can be regarded as dependent variables of the motor commands, 

from the viewpoint of the dynamical system 2.20 and the relaxation times. That is, 

they are instantaneously determined from the motor commands. 

The second term of the relaxation equation 2.20 are implemented as electrical 

synapses or gap junctions between motor command neurons at the neighboring times 

(see electrical resistances in Fig. 2 .. 1). Then we can identify the regularization pa-

rameter入aselectrical conductance g of gap junctions. g is slowly decreased to zero 

during relaxation. This is just like the "penalty method" in optimal control theory. 

In this operation, we treat the first term of eq. 2.10 as a hard constraint and the sec-

ond term as a soft constraint. In other words, we seek the solution with the minimum 
torque change from those which strictly satisfy the movement conditions. 

Because E is a Ljapunov function of the dynamical system 2.18, it always de— 

creases. The stable equilibrium state of the neural network model corresponds to the 

(local) minimum "energy" state, and hence the network attains the motor command 

which satisfies the hard constraint (ED= 0) and with a minimum E5. The network 

first acquires ED by training, and then minimizes the learned energy E =馴＋入Es.

The smoothness energy Es is embedded as a hardware structure of the network. 
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3. Repetitively structured, time invariant cascade neural net-
work model for vector field of dynamics 

Previously, we proposed a four-layer MLFF model, which first learns the flow of a 

dynamical system describing the controlled object, and then generates the minimum 

torque-change trajectory (Maeda, Kawato, Uno, Suzuki, 1988; Kawato, Uno, lsobe, 

Suzuki, 1988; Uno, Kawato, Maeda, Suzuki, 1988). By computer simulation, we 

showed that the proposed model can generate a fairly good minimum torque-change 
trajectory. This simple model does not a priori possess intrinsic properties of the flow 

such as (i) continuity of the solution of the dynamical system with respect to time 

and initial conditions, (ii) group property of the flow心：ゆ(t+s;x)::::::心(t;心(s;x)), 

(iii) causality: trajectory at a given time does not depend on the torque input after 

that time. We found that the network can acquire the third property by only training 
from examples (Maeda et al., 1988). But the first two properties were not acquired. 

The most serious shortcoming of this simple model is its size. If the time step△t 

is fixed and movement time becomes long, then the network size becomes enormous. 

Especially, the number of synaptic weights which must be learned grows in polynomial 

order of the movement time. 

Hence, in this paper we propose a neural network model which inherently possesses 
the above three properties of the flow. The number of the synaptic weights to be 

learned in this model is constant regardless of the movement time. It is a repetitively 

structured, time invariant, cascade neural network model (Fig. 3 .. 1). This is a natural 

extension of our previous model. It learns the vector field of the ordinary differential 

equation which describes the forward dynamics of the controlled object instead of the 
flow. We note that general mathematical arguments developed in the previous section 

all remain applicable to the cascade model, since the model still has a multi-layer 

feedforward structure regardless of its complicated appearance at first sight. 

For simplicity, we explain the cascade model in the case of a single-degree-of-

freedom controlled object without forward or inverse kinematics (see Fig. 3 .. 1). Ex-

tension to the multi-degrees-of-freedom case with the ill-posed inverse dynamics and 

kinematics problems is straightforward, and will be given in the next section. Let us 

assume that the controlled object is described by the following equations. 

d0/dt 

刷dt ゜- h(0, 0, r), 

(3.1) 

(3.2) 

here, only in this section, 0, 0, r are all scalars, and h is a scalar function. The 

Euler's method of numerical integration of this dynamical equation can be written 
as follows. 

0((j + 1)△ t) 

0((j + 1)△ t) 

B(j△ t) +△ t・0(j△ t) 

的△t) +△ t・h(B(j△ t), iJ(j△ t), r(j△ t)). 

(3.3) 

(3.4) 

The cascade structure of the neural network model shown in Fig. 3 .. 1 is simply a 

direct hardware implementation of Euler's method above. 
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Figure 3 .. 1: A repetitively structured cascade neural network model for trajectory 

formation based on the minimum torque-change criterion. For simplicity, a single 

degree of freedom case without the kinematics problem is shown. All four-layer 

network units are identical. Operations of the model are divided into (a) the learning 

phase, and (b) the pattern generating phase. In the learning phase, the network 

unit learns the vector field of the dynamical equation which describes the forward 

dynamics of the controlled object. In the pattern generating phase, the network 

rela.xes its state to minimum energy equilibrium based on backward propagation of 

errors through the acquired forward model. 
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The model consists of many identical four-layer network units. The jth network 

unit corresponds to time j△ t. The network units are connected in a cascade forma— 

tion. Operation of each neuron is assumed to be the linear weighted summation of 

synaptic inputs and the sigmoid nonlinear transformation. The input-output trans-

formation of the neurons in the first and the fourth layers is assumed linear. Let 

吐，jand y如denotean average membrane potential (i.e. weighted summation of all 

synaptic inputs) and an output (i.e. average firing frequency) of the ith neuron in 

the mth layer of the jth network unit. ¢is the input-output transformation. w悶i-1,m
denotes a synaptic weight from the kth neuron in them -1th layer to the ith neuron 

in the mth layer. Then the following equations hold: 

u~.j = L咬i-1,m姑-1,j,
k 

Y加=cp(u加）．

、
1
ノ

、

1
,

5

6

 

．
 

3

3

 

，
ー
、
（
ー
、

The cascade structure is formed by a unit-weight serial connection from the fourth 

layer of the jth network unit to the first layer of the j + 1th network unit, and a 

unit-weight connection bypass from the fourth layer of the jth network unit to the 

fourth layer of the j + 1th network unit: 
. . 
i ＝ i 

Y1,j+l 約，j,

YL+1 = yし+YL+1・ 

(3.7) 

(3.8) 

The serial connections correspond to the second terms of the right sides of Euler's 

formula. The bypass connections correspond to the first terms of the right sides, and 

just convey the previous states to the next time step. Actually, eq. 3.8 corresponds 

to eqs.3.3 and 3.4. Since the vector field is time invariant, all the network units are 

identical. That is, the number of neurons and the synaptic weights are exactly the 

same for all units. 

The network unit consists of four layers of neurons. The first layer represents the 

time course of the trajectory and the torque. The third layer represents the change 

of the trajectory within a 1!-nit of time, that is, the vector field multiplied by the 

unit of time, △ t•h(0(j• t), 0(j△ t), r(j△ t)). The second layer is expected to provide 

the necessary nonlinear transformations for learning the vector field multiplied by 

the unit of time. The fourth layer and the output line on the right side represent 

the estimated time course of the trajectory. Th~fourth layer neurons in the j th 

unit output the estimated trajectory, 0(j△ t) and 0(j△ t) at time j△ t, which are the 

summation of their two synaptic inputs, i.e., the outputs of the third layer in the jth 

unit and outputs from the fourth layer neurons in the (j -l)st unit (see eq. 3.8). 

The first two neurons in the first layer of the first unit represent the initial conditions 

0(0) and 0(0). Because the model faithfully reproduces the time structure of the 

dynamical system, the three intrinsic properties of the flow of the dynamical system, 

which are listed in the beginning of this section, are embedded into the cascade 

structure of the model. 

Exactly the same as in the previous model, operations of this network are divided 

into the learning phase (Fig. 3 .. la) and the pattern-generating phase (Fig. 3 .. lb). 
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In the learning phase (Fig. 3 .. la), the common input torque are fed to both the 

controlled object and the neural network model. The realized trajectory (0, 0) from 
the controlled object is used as a teaching signal to acquire the forward dynamics 

model between the first and the third layers of the network unit. The steepest 

descent method is introduced for learning synaptic weights in the network unit, with 

the following error function E for the output of the 4th layer. 

N 

E = 1/2LL[{尻(j△t) -0c(j△ t)}2 + {0c(j△ t) —尻(j△t)}2]. (3.9) 
C j=l 

Here, c represents the input torque and the resulting trajectory. The back-propagation 

learning algorithm (Rumelhart, Hinton, & Williams, 1986; Werbos, 1988) can be ap-
plied to this case as follows. Let 8~,j denote an error signal of the ith neuron in the 
mth layer of the jth network unit. Then, 8加＝一fJE / fJu~,j. The error signal飢 of
the ith neuron in the 4th layer of the jth network unit is the summation of the error 

between the realized trajectory and the estimated trajectory at time j△ t, the error 

signal of the ith neuron in the 4th layer of the (j + l)st network unit and the error 
signal of the ith neuron in the 1st layer of the (j + l)st network unit: 

sL =戸夜(j△t)一例(j△t)} +俎，j+l+ 0L+1' 

j = 1,2, …，N; i = 1, 2, (3.10) 

here 0 = (0, 0). The error signal of neurons in the 3rd layer is the same as that of the 
4th layer. The error signals of neurons in the 1st and the 2nd layers are computed 

from those in the 3rd layer as in the usual back-propagation learning rule: 

似＝が(u如）L wrkm+l5~+l,J' (3.11) 
k 

After the incremental changes of synaptic weights are calculated independently in 

every network unit, all changes for the corresponding synaptic weight are summed 

to be the net change. This procedure guarantees identity of all network units. 

In the pattern-generating phase (Fig. 3 .. lb), electrical cou~lings between neurons 
representing torques in the 1st layer of the neighboring umts are activated while 

torque inputs to the 1st layer and the teaching signal to the 4th layer are suppressed. 

Instead, the central commands which specify the desired end point, the desired via— 

point and the locations of obstacles to be avoided are given to the 4th layer from 

the higher motor center which receives the necessary information for the trajectory 

specification. Locations of the end point, the intermediate point and the obstacle are 

given to the fourth-layer of the network units. 

The error signals for all neurons are calculated from eq. 3.10 exactly the same as 

in the learning phase, while replacing the realized trajectory as the teaching signal by 

the desired end point, the via-point, obstacles and so on, as the objective signal. If 
we consider the simple case without via-point or obstacles, the backward propagation 
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of errors in the pattern generating phase obeys the following equation: 

心=e~,N -e:v, 

叱＝俎，j+l+ 8L+1, 
j = 1, 2, ... , N -l; i = 1, 2, (3.12) 

here釦，N= (0 d,N, 0 d,N) 1 represents desired termina cond1t10ns. The error signals 

are not used for synaptic modification. However, the error signals to the torque 

neurons in the first layer are used for dynamical state change of the model. That 

is, the network changes its state autonomously by forward synaptic calculation and 

by back-propagation of error signals through the cascade structure while obeying the 

following differential equation. 

T・d乃/ds = 叱+g(Tj+l -2Tj +巧ー1)

j = 0, 1, 2, ... , N -l. (3.13) 

Here, s is the time of neuron state change and has nothing to do with the movement 

time t. g denotes the electrical conductance of the gap junction. We note that calcu-

lation of the error signal 8L at every instant s in eq. 3.13 requires both the forward 

calculation of every neuron state through the entire network with learned synaptic 

weights, and the backward propagation of the error signal by eq. 3.12 through the 

entire network. 
It can be shown that the network dynamics has the following Ljapunov function 

or "energy". 

. . N 

L = l/2{0d(N△ t) -0(N△ t)}2 + 1/2{恥(N△t) -0d(N△ t)}2 + 1/2. g区（巧• —'Tj-1) 
j=O 

(3.14) 
Here we show the Ljapunov function in a simple case without the via-point or the ob-

stacle avoidance conditions. The first two terms of the Ljapunov function require that 

the hand reaches the end point with a specified speed and the third term guarantees 

the minimum torque change criterion. The stable equilibrium point of the network 

dynamics corresponds to the minimum-energy state, and, hence, the network outputs 

the torque, which realizes the minimum torque-change trajectory. An appropriate 
delay line should be inserted between the cascade network and the controlled object 

in Fig. 3 .. lb. The conductance g is slowly decreased to 0, during relaxation of the 

state point to the equilibrium, similar to the temperature in "simulated annealing" 

(Kirkpatrick, Gellat, Vecci, 1983). 

The first two terms of the Ljapunov function are the hard constraints imposed 
by trajectory specification, and the third term is the smoothness constraint. Intro— 

duction of the third energy as electrical couplings resolves the ill-posed trajectory 

formation. The network learns the first two terms of the energy as synaptic weights, 

and then minimizes the total energy. 

Mathematically, the relaxation computation of the cascade network has a close 

relationship with the first-order gradient method which is a well known numerical 
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method in optimal control theory (Bryson and Ho, 1975). As mentioned before, the 

forward calculation through the cascade structure using eqs. 3.3 and 3.4 is interpreted 

as forward numerical integration of the control system equation 2.1. Similarly, the 

backward propagation of error is interpreted as backward integration of a part of an 

adjoint equation of the dynamics eq. 2.1. Equation 3.12 can be interpreted as back-

ward Euler's numerical integration of a part of the adjoint equation (see Appendix). 

The proposed network is different from the control theory approach in that it does not 

utilize any co-state (in this case +). Because of this, (i) the modification algorithm 

of the motor command is different, (ii) the neural network model uses fewer state 

variables, (iii) and it is several times faster. The most marked advantage of the neural 
network model is that we can impose constraints on the motor command by directly 

constraining states of the neurons which represent the motor command. Instead, if 

we use the co-state, these constraints must be treated as those on the state variables, 

which leads to further complication of the calculations. This is important, since when 

we extend the minimum torque-change model to the minimum muscle tension-change 

model, we must introduce positivity constraints on muscle tensions. Actually, in this 

case, if we use a standard sigmoid input-output transformation function for neurons 

representing motor commands, we do not need to introduce any extra constraint for 

positivity of muscle tension at all. 

4. Cascade dynamics network in conjunction with forward 
kinematics model for a redundant controlled object 

In this section we consider a multi-degree of freedom controlled object, which has 

redundancy at both the dynamics and kinematics levels. For trajectory formation of 

this controlled object, we propose a combination network model which consists of the 

cascade neural network shown in Fig. 3 .. 1 as a forward dynamics model and MLFF 

network as a forward kinematics model. This extended model can simultaneously 

solve the three ill-posed problems illustrated in Fig. 1..1. 

Let us return to the notations and equations in Section 2. The motor command 

has m control variables. The body coordinates have ndegrees of freedom. The task-

oriented coordinates have k dimensions. We consider the general case of m 2: n 2: k. 

For acquiring the forward dynamics model described by eq. 2.1, we use the cascade 

network shown in Fig. 3 .. 1. But in this case, the first layer of the network unit has 

2n + m neurons, the third layer and the fourth layer have 2n neurons. The forward 

kinematics described by eq. 2.3 is separately acquired in an MLFF by training. The 

forward kinematics network has an input layer which represents the position of the 

body coordinates and an output layer which represents the position of the task-

oriented coordinates. The number of neurons in the input layer and the output layer 

are n and k. Thus, the network learns the many-to-one mapping. Learning the 

forward dynamics model and the forward kinematics model can be done separately 

by providing them with appropriate inputs and teaching signals. 

In the pattern generating phase, the forward kinematics model is attached to the 

output line of each network unit in the cascade neural network model. Thus, we 
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need the same number of duplicates of the forward kinematics model as the number 

of network units. Among the four movement conditions, only the terminal velocity 

condition is represented in body coordinates and hence directly given to the cascade 

dynamics network model. This is because a stop of the hand does not necessarily 

imply a stop of the arm for a redundant controlled object. The other three conditions 

regarding the end point location, the via-point and obstacle avoidance condition are 

all expressed in the task-oriented coordinates. Correspondingly, objective signals are 

given to the output layers of the forward kinematics model. The error signals are first 

calculated at the output layer of the forward kinematics model, then they are back-

propagated through the forward kinematics model and subsequently through the 
cascade dynamics network. Based on this back-propagated error signal, relaxation 

computation is done exactly as described in the previous section. 

We note that if n > k, we can not describe dynamical changes of states of the 

controlled object by only using the task-oriented coordinates. This is why the cascade 

network cannot acquire the composite dynamics and kinematics model if n > k. 
The inverse dynamics and inverse kinematics problems for redundant control ob-

jects can not uniquely be solved by the direct inverse modeling approach (Albus, 

1975; Miller, 1987; Miller, Glanz, Kraft, 1987; Kuperstein, 1988; Atkeson, Reinkens-

meyer, 1988). We emphasize that the composite neural network model resolves these 

ill-posed problems based on the minimum torque-change criterion. 

5. Simulation for a two-link arm model 

5.1 Learning forward dynamics and kinematics model 

The performance of the proposed network model was examined in computer simula— 

tion experiments of trajectory formation. A two-link robotic manipulator was used 

as a model of a human right arm (see Fig. 5 .. 1). Links 1 and 2 correspond to the 

upper arm and the forearm, and joints 1 and 2 correspond to the shoulder and the 

elbow. Joint 1 (shoulder) is located at the origin of the X -Y cartesian coordinates. 

The positive direction of the X coordinate is the right side direction of the body, 

and the positive direction of the Y coordinate is the front direction of the body (see 

Fig. 5 .. 1). Physical parameters of the model manipulator are shown in Table 5 .. 1. 

They were chosen based on experiment data and human arm geometry (see Uno et 

al., 1989). The hand position is represented as (X, Y) in meter. 

Because the manipulator has two degrees of freedom within the plane, there is 

no redundancy at the kinematics level. Because the manipulator has only one actu-

ator at each joint, there is no redundancy at the dynamics level. Consequently, in 

this simplest case, the forward kinematics and dynamics of the manipulator can be 

described by the following ordinary differential equations expressed in task-oriented 

coordinates. 

dX/dt = X 

dY/dt = Y 
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Figure 5 .. 1: A two-joint robotic manipulator within a horizontal plane as a model 

of a human arm. See Table 5 .. 1 for values of physical parameters of the model 
manipulator. 

Parameter Upper arm Forearm 

Lk(m) 0.25 0.35 

品(m) 0.11 0.15 

Mk(kg) 0.9 1.1 

瓜kgmり 0.065 0.100 

叫 kgni2/s) 0.07 0.07 

Table 5 .. 1: Physical parameters of the model manipulator shown in Fig. 5 .. 1. 
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紘 /dt

clY /dt 
p(X, Y, X, Y, r1, 社）
q(X,Y,X,Y, 孔召）． (5.1) 

Here, r1(t) andぞ(t)represent torque waveforms fed to the shoulder and the elbow. p 

and q are nonlinear functions which determine the nonlinear dynamics and kinematics 

of the manipulator. 

Correspondingly, we chose the simple cascade neural network model shown in 

Fig. 3 .. 1 as a composite model of the forward dynamics and kinematics of the con-

trolled object. In other words, the right side of eq. 5.1 is acquired in a three—layer 
network unit. The first layer of each netw?rk. unit contains 6 neurons. 4 of them 

represent the task space trajectory X, Y, X, Y, and the other 2 represent torque 

waveforms r1, 召. The third layer of each network unit contains 4 neurons which 

represent changes of the task space trajectory within a unit of time (i.e. the right 

sides of eq. 5.1 multiplied by△ t). The fourth layer of each ne~w~rk unit contains 
4 neurons, and they represent the task space trajectory X, Y, X, Y. There are 20 

hidden neurons in the second layer of each network unit. Hence, there are 34 neurons 

in each network unit. 200 synaptic weights need to be learned to acquire combination 

of forward dynamics and kinematics. 

The movement time was set at 500ms. 5ms was chosen for the time step△ t of 

the network. Thus, we prepared 100 network units. The total neural network model 

contains 3,400 neurons and 20,000 modifiable synaptic weights. However, only 200 

synaptic weights are independent parameters to be acquired since each network unit 

is identical. 

Two different learning schemes are possible to train the cascade network as the 

forward model. The first was described in Section 3, and uses back-propagation 

of trajectory errors all through the cascade structure. The second scheme is simpler 

than this. We detach each network unit from the cascade structure. The jth network 

unit receives the realized trajectory and the motor command at (j -1)△ t as inputs, 

and receives the realized trajectory at j△ t as a desired output or the teaching signal. 

Consequently, each network unit is trained to acquire only the vector field multiplied 

by△ t, and no back-propagation of trajectory errors is conducted. 

Learning of the forward dynamics and kinematics model was conducted utilizing 

both schemes with 40 training trajectories whose durations were all 500ms. The 

starting point and the end point of the training trajectory were located within a 

circle with a center (0.2,0.2) and a radius 0.15. Each trajectory contains 100 sampling 

points. Therefore, the training set consists of 4,000 data. This is sufficiently large 

compared with the 200 independent synaptic weights, so we expect that the network 

generalizes well after sufficient learning. First, the training set was given to the 

network 1,000 times utilizing the second learning scheme. Next, the same training set 

was again given 1,000 times with the first learning method. The estimated trajectories 

by the network were almost identical to the teaching trajectories after learning. The 

network estimated fairly good trajectory even for an inexperienced torque input. 

Then we used the trained network for arm trajectory formation. 
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5.2 Trajectory between two points 

First, trajectory formation between two points was examined. The objective is to 

move the arm between the starting point (0.1,0.2) and the end point (0.2,0.3) in 

500ms based on the minimum torque-change criterion. 

Fig. 5 .. 2a shows the initial condition of the network in relaxation computation 

for trajectory formation. The left column shows the hand trajectory~(above) and 
~(below). The middle column shows the hand velocity time course X (above) and 

Y (below). The right column shows the torque waveforms fed to the shoulder r1 
(above) and to the elbow召 (below). The two-point chain curves show the exact 

trajectory and torque of the minimum torque-change model, which were obtained by 
the Newton-like method. The one-point chain curves show the trajectory estimated 

by the network (i.e. outputs from the 4th layer of the network units) and the states 

of the torque neurons (5th and 6th neurons in the 1st layer of network units). The 

states of 200 torque neurons were set at random initial values at the beginning of the 

relaxation. After 1,000 iterations of relaxation computation according to eq. 3.13, 

the state settles down to a stable equilibrium and generates an estimated trajectory 

and a torque shown in Fig. 5 .. 26. Solid curves in Fig. 5 .. 26 show a trajectory realized 

by the model manipulator when fed the torque estimated by the network. The 

estimated trajectory reaches the end point at the given time and stopped properly. 

The generated torque waveforms were smooth enough and fairly close to the exact 

solution. 

The realized trajectory did not reach the end point. There are consistent errors 

6etween the minimum torque-change trajectory (two-point chain curve), the esti-

mated trajectory (one-point chain curve) and the realized trajectory (solid curve). 

We know that the cause of this error is incomplete learning of dynamics and kine-

matics, since the error is almost negligible in the simulation experiments where an 

accurate forward model is used (see section 5.4). Thus, we expect that the network 

can generate a more accurate trajectory and torque if we use more efficient learning 

algorithms such as the conjugate gradient method or the quasi-Newton method in-

stead of the back-propagation (steepest descent) algorithm, and if we carefully select 

more independent training data. 

Fig. 5 .. 3 shows a bird's-eye view of another example of a hand path between 

the starting point (0.3,0.3) and the end point (0.15,0.15), and configurations of the 

arm every 125ms. The minimum torque-change hand path and the realized hand 

path are shown 6y the two-point chain curve and the solid curve, respectively. At 

this resolution, the minimum-torque change hand path and the one estimated by 

the neural network model can not be separately seen. Again, the error between 

the realized hand path and the minimum torque-change hand path was due to the 

incomplete learning of the forward model. 
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Figure 5 .. 2: Relaxation of the neural network state during generation of a movement 

between two points. (a) shows the initial condition of the neural network model. 

(b) shows the stable equilibrium state of the network after 1,000 iterations and the 
corresponding realized trajectory by the model manipulator. The abscissa of all the 

figures shows the time in seconds. The left column shows the hand position trajectory 

X(t) (above) and Y(t) (below). The scale of the ordinate is in meters. The middle 

column shows the hand velocity history .,-Y(t) (above) and Y(t) (below). The scale of 

the ordinate is in meters per second. The right column shows the torque waveforms 

fed to the shoulder (above) and to the elbow (below). The scale of the ordinate 

is in volts. Two-point chain curves are exact trajectories and torque waveforms of 

the minimum torque-change model calculated by a Newton-like method. One-point 

chain curves in the left and middle columns are trajectories estimated by the network 

model. Solid curves in the right column represent torque waveforms generated by 

the network model. Solid curves in the left and middle columns in (b) show the 
realized trajectory by the model manipulator when the generated torque is fed to it. 

Fig. 5 .. 4b and Fig. 5 .. 66 will be presented in the same format as (b). 
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Xo=0.300 
Yo=0.300 

Xf=0.150 

Yf=0.150 

Figure 5 .. 3: Bird's-eye view of a hand path between two points and 5 configurations 

of the model manipulator every 125ms. The scale in the figure is O.lm. The solid 

curve is the realized hand path, and the two-point chain curve is the exact mini-

mum torque-change hand path calculated by a Newton-like method. The number of 

rela..xation computation iterations was 1,000. 
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5.3 Obstacle avoidance traJectory 

We simulated trajectory formation by the neural network model while avoiding 

obstacles. First, a simple case with one obstacle which is a circle with center 
(Cx, Cy) =(0.225,0.225) and a radius R=0.02m was examined (see Fig. 5 . .4a). The 

starting point and the end point were (0.3,0.3) and (0.15,0.15), which are the same 

as in Fig. 5 .. 3. 
Let (Xj, Yj) denote the hand position at the jth time which is estimated by the 

neural network model. rj represents a distance between the center of the circle and 

the estimated hand position at the jth time. The non-negative obstacle avoidance 

function in eq. 2.16 was chosen as follows: 

H(Xj, 巧；0) = (ri-R)2/2 (乃く R)

- 0 (ri~R). (5.2) 

With this obstacle avoidance potential, the corresponding obstacle avoidance error 

signals for the first and the second neurons in the fourth layer of the jth network 

unit.can be calculated as follows: 

叱＝ーh(rj)(Cx —ふ） (5.3) 

碍＝ ーh(町）(Cy -Yj) ,J (5.4) 

h匂） = (R-乃）r;l 仇<R) 

- 0 (rj~R). (5.5) 

Note that the sign of the error signal is opposite that of the usual error signals 
associated with the desired end or via-points, since h is positive. Thus, the center of 

the obstacle acts like a repelling point when the hand position is within a circle. If 
the hand is located outside the obstacle, the obstacle does not exert any force on the 

arm at all. 
Fig. 5 . .4a shows the hand path with the same format as in Fig. 5 .. 3. Fig. 5 . .4b 

shows corresponding trajectories and torque waveforms. The two-point chain curves 

in Fig. 5 . .4a and b show hand paths, trajectories and torque waveforms for the 

minimum torque-change trajectory without the obstacle. One can see considerable 

deformation of the torque waveforms because of avoidance of even the small obstacle. 

The neural network model can also generate a trajectory while avoiding multiple 
obstacles as shown in Fig. 5 .. 5. The starting point is (0.1,0.2), and the end point is 

(0.2,0.3). Centers of the two circle obstacles with a radius 0.02m are (0.125,0.245) 

and (0.175,0.255). In this simulation, we used the exact equation shown in eq. 5.1 for 
forward calculation in the relaxation computation instead of using the network unit. 

Similarly, we used_ th_e transpose of the Jacobian of the right hand sides of eq. 5 .1 with 
respect to X, Y, X, Y, 社，召 duringbackward calculation of error signals instead of 

the usual back-propagation of the neural network model. Because we used the exact 

forヽvarddynamics and kinematics model, the estimated trajectory and the realized 

trajectory coincided almost perfectly (see Fig. 5 .. 5). vVe note that the realized and 
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Figure 5 .. 4: (a) Bird's-eye view of a hand path (solid curve) while avoiding a circle 

obstacle and 5 configurations of the model manipulator every 125ms. The format is 

the same as in Fig. 5 .. 3. The two-point chain curve shows the minimum torque-change 

hand path when there is no obstacle. (b) Trajectories and torque waveforms for a 

movement avoiding an obstacle (solid curves). The format is the same as in Fig. 5 .. 2b. 

The two-point chain curves show the minimum torque-change trajectory and the 

torque waveform when there is no obstacle. Note the considerable deformation of 

the torque waveforms due to the presence of the obstacle. The number of relaxation 

computation iterations was 2,000 in this experiment. 
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10000th Ite 

Xo=0. 1呪
Yo=0.2呪
Xf=0.200 

Yf=0.300 

Figure 5 .. 5: Bird's-eye view of a hand path which avoids two obstacles. A two-point 

chain curve shows the exact minimum torque-change hand path calculated by a New-

ton-like method when there is no obstacle. A one-point chain curve shows a hand 

path estimated by the network model. A solid curve shows a realized trajectory 

by the manipulator when the generated torque is fed to it. Because we used an 

accurate model of the forward dynamics in this simulation, these two curves almost 

coincided and can not be seen separately at this resolution. The number of relaxation 

computation iterations was 10,000 in this experiment. 
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estimated trajectories came in contact with the two obstacles because of the minimum 

torque-change criterion. 

Because we imposed the obstacle avoidance potential only to the hand position, 
the links of the manipulator collided with the right obstacle in this case. We can 

extend the present model so that neither the links nor the hand collide with obstacles, 

as follows: First, we need to train a neural network model which estimates link 

locations from the hand position or from the joint angles. In the pattern generating 

phase, this extra forward kinematics model is attached to the output lines of the 

original cascade network. The error signals for obstacle avoidance are first calculated 
at the output side of this extra network, then they are back-propagated through it, 

and subsequently through the cascade network as before. 

We note that the neural network model has multiple stable equilibrium in relax-

ation computation for avoidance of multiple obstacles (Fig. 5 .. 5). Depending on the 

initial conditions, the network settled down to three different trajectories. The first is 

shown in Fig. 5 .. 5. The second trajectory runs above the two obstacles, and the third 

one runs below. The forward dynamics and kinematics of the arm is nonlinear. The 

obstacle avoidance potential field is not convex. Consequently, the total energy of the 

network, eq. 2.10, is not convex, and the steepest descent method employed in this 

paper may be trapped to local minimum, as exemplified in this example. We do not 

think of this local minimum problem as a deficiency of our model. This kind of local 

minimum behavior is frequently seen in humans. Furthermore, we can avoid local 

minimum by adding noise to the relaxation equation as in the simulated annealing. 

However, we do not think this is necessary. 

5.4 v・ 1a-po1nt traJectory 

The neural network generated a via-point trajectory which passes through the via-

point (0,0.23) from the start point (-0.2,0.3) to the end point (0.2,0.3) (see Fig. 5 .. 6a 

and b). Fig. 5 .. 6a shows the hand paths and configurations of the manipulator. 

Fig. 5 .. 6b shows trajectories and torque waveforms. Parallelograms in Fig. 5 .. 6 show 

the location of the via-point. We used exact equations in forward and backward cal-

culations instead of using the network unit. In this simulation we did not specify the 
time when the via-point must be passed. The neural network model autonomously 

finds the best time to pass the via-point on the minimum torque-change criterion us-

ing the energy of eq. 2.15. The estimated and realized trajectories were in fairly close 

agreement with the trajectory calculated by the Newton-like method. In particular, 

between these two methods the time required to pass the via-point differed by only 

0.005s. 

6. Discussion 

We proposed a cascade neural network model for multi-joint arm trajectory forma-
tion, and showed that it can produce minimum torque-change motor commands and 

trajectories under several behavioral conditions. Examples shown include simple 
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Figure 5 .. 6: Hand paths, arm configurations (a), trajectories and torque waveforms 

(b) for a via-point movement. (a) is the same format as Fig. 5 .. 3. (b) is the same 

format as Fig. 5 .. 2b. The parallelogram in (a) shows the location of the via-point. 

Parallelograms in the left column of (b) show the corresponding X and Y coordinates 

of the via-point. The number of relaxation computation iterations was 5,000 in this 

experiment. 
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movements between two points, via-point movements, obstacle avoidance movements 

with a single obstacle or multiple obstacles. The neural network model first learns 

forward dynamics and kinematics of the controlled object. Then, based on the ac-

quired model, it generates torques and trajectory by relaxation computations. The 

model predicts and reproduces human experiment data. The model can resolve ill-

posed problems inherent in trajectory formation and control of a redundant controlled 

object (i.e. all three problems shown in Fig. 1..1 are ill-posed). 

The trajectory formation problem has been actively studied by the nerual network 

modeling approach (Eckmiller, 1988; Bullock and Grossberg, 1988; Massone and 

Bizzi, 1989; Jordan, 1989). 
The model proposed in this paper has several conceptual similarities with the 

motor program subnetwork conjoined with the forward model subnetwork proposed 

by Jordan (1989). Jordan showed computer simulation of trajectory formation for a 

one-joint arm based on the minimum jerk model. He noted that it is straightforward 

to implement the minimum torque-change criterion in his model. Our model and 

Jordan's both use the forward model of the controlled object. The idea of resolving 

the ill-posed motor control problems by introducing a smoothness constraint such as 

the minimum jerk criterion or minimum torque-change criterion is also common. 

The essential difference between the two models is the method of satisfying the 

smoothness constraint. In our model, relaxation of state vectors of the model (energy 

minimization) is utilized for attaining the smoothness constraint. Because of this, 

torque values at different times must be independently represented in the model, and 

hence time is represented spatially and the smoothness constraint is guaranteed by 

electrical coupling. Actually, if this were not necessary, our cascade network could be 

viewed as a spatially unrolled version of a recurrent network (see Fig. 5 of Rumelhart 

et al., 1986). On the other hand, in Jordan's model, time is represented as time in 

a recurrent network and the smoothness constraint is guaranteed by an error term 

based on comparing the activations of units at adjacent moments in time. In this 

sense, the smoothness constraint is embedded in synaptic weights of the motor control 

subnetwork through learning. 

One of the advantages of Jordan's model is that, once it learns the forward model 

of the controlled object and the smoothness constraint, it can generate a trajectory in 

real time. On the other hand, in our model, the relaxation time (typically hundreds 

of iterations) is required for trajectory formation. This may be a serious shortcoming 

of our network as a model of the brain because it is obvious that the motor control 

nerual network must calculate trajectory in real time (at least within a hundred 

milliseconds). There might be three ways to relax this shortcoming. 

First, in computer simulation of relaxation computation, we discretized the re-

laxation time s. It is always difficult to estimate△ s in biological neural networks. 

When we deal with a continuous dynamical system without time delay which has 

a stable equilibrium point, we can arbitrarily speed up the convergence rate to the 

equilibrium by magnifying the vector field. Hence, the real problem is to estimate 

the extent of the time delay associated with chemical synaptic transmission and con-
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duction along axons. One reason to expect that△ s in our neural network model is 

very small resides in electrical synapses. The interaction through gap junctions may 

not be associated with any significant delay, and convergence due to the smoothness 

constraint can be very fast. On the other hand, the forward and backward calcula— 

tion through a vast number of cascaded network units inevitably induce considerable 

synaptic and conduction delays. Thus, whereas△ s may be large for the first term of 

eq. 3.13, it can be very small for the second term .. We need to further investigate the 

system convergence rate in this complicated situation. Kitano et al. (unpublished 

observation) found that the iteration number of relaxation computation can be as 

small as 50 for movements between two points, if one considers the above point and 
uses the novel "virtual end point method" with a fixed relatively large g instead of 

the "simulated annealing" (decrease of g). 

Second, we recently found that a multi-grid, multi-resolution (multi time-scale) 

extension of our network (Fig. 6 .. 1) can calculate the trajectory an order of magnitude 

faster than the original model (Maeda et al., 1989; Maeda, 1989). Fig. 6 .. 1 shows 

an example with three hierarchies. A model network within each hierarchy is just 

the cascade network shown in Fig. 3 .. 1. At the higher hierarchy, the step size of the 

movement time is longer. Because of the smaller number of network units, the higher 

level network settles down to the equilibrium solution faster than the lower level. The 

higher level gives a rough initial solution to the lower level via a smoothing network, 

then the lower level calculates a more accurate solution. Besides the computation 
time, the multi-grid network may play an important role in trajectory planning with a 

long time scale. Although the number of synaptic weights to be learned in the cascade 

network is constant regardless of the movement time (see Section 3), the network 

size itself becomes larger linearly with the movement time. This might be a serious 

problem if we consider a long range movement planning (e.g. 10 second speech). The 
multi-grid network can resolve this size difficulty by introducing different smoothness 

constraints at different time scales which can fix the size of the lowest level cascade 

network. 

Third, it is clear that the convergence time is very short if the initial condition for 

the relaxation computation is fairly close to the equilibrium solution. We can imagine 
that some associative content addressable memory (ACAM) network can store the 

converged solution of the cascade network, and then can instantaneously load it on 

the cascade network as the initial condition. One candidate of such ACAM is Jordan's 

recurrent network (1986), and this is the same usage of the recurrent network as a 

storage tool studied by Massone and Bizzi (1989). We are now collaborating Jordan 

to develop this aspect of both models. 

One advantage of our model is that, once it learns the forward model of the 

controlled object, it can generate any trajectory regardless of locations of the end 

point, intermediate points and obstacles to be avoided. On the other hand, in J or-

clan's model, the motor learning subnetwork must learn many instances of trajectories 

with various locations of the end points, intermediate points and obstacles so that it 
can generate them. This advantage of our model is especially important if the net-
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Figure 6 .. 1: A multi-grid, multi-resolution neural network model for trajectory for-

mation. A three level hierarchical structure is schematically shown. Each rectangle 

represents a three-layer network unit. The numeral in the rectangle shows the time 

step adopted in each hierarchy. The width of the rectangle schematically represents 

the length of the time step. 
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work is used for trajectory formation of an articulator. We believe that the minimum 

torque-change model established for arm movements can also be applied to articu-

lator movements (speech), since the computational principle such as the minimum 

torque-change model must be independent of the controlled object, but inherent in 
the central nervous system itself. In speech synthesis, a long series of phonemes must 

be uttered continuously. From the trajectory formation standpoint, this implies that 
many via-points are specified for one continuous trajectory. Our cascade network can 

autonomously find the best time to pass through many via-points. This is one of the 

most attractive capabilities of our network. The cascade network can be applied n:ot 

only to speech synthesis but also to continuous speech recognition, as first hypothe-
sized in "motor theory of speech perception" (Liberman et al., 1967). The trajectory 

formation network can be used as an inverse system of trajectory formation, that 

is, as a continuous speech recognition system, by recurrently back-propagating an 

error between speech data and generated data. Application of the cascade network 

to speech synthesis and speech recognition is one of our important projects. 
As mentioned earlier, there are two different approaches which resolve ill-posed 

motor control problems. One approach is to introduce a performance index. An-

other approach is to utilize a feedback controller. The feedback controller selects one 

specific motor command in the inverse dynamics and inverse kinematics problems 

even for redundant manipulators. The minimum jerk model formulated in the task-

oriented coordinates can resolve ill-posed trajectory formation problems, but can not 
resolve ill-posed inverse kinematics and inverse dynamics problems for redundant 

manipulators. The feedback control approach can not resolve the ill-posed trajectory 

formation problem. Thus, a combination of these two approaches can resolve all three 

ill-posed problems. This is the step-by-step computational approach. This has been 

studied by many researchers including us (Hogan, 1984; Flash, 1987; Mussa-Ivaldi, 
Morasso, Zaccaria, 1988; Massone, Bizzi, 1989; Kano, Kawato, Suzuki, 1989). 

We hypothesize that the cascade network (direct scheme) is used for very skilled 

movements, while step-by-step computation is utilized for relatively difficult or less 

skilled movements. That is, we suppose that the computational scheme adopted by 

the brain changes with motor learning. We have a few experimental data which seem 
to support this idea. First, in the human arm movement with the external spring force 

(Fig. 6 of Uno et al., 1989), subjects first tended to generate trajectories of various 

shapes at the beginning of the experiment when they were still not accustomed 

to the spring. After tens of repetitions, subjects began to consistently generate a 

curved hand path, which is the minimum torque-change trajectory (Uno, Kawata, 

Suzuki, 1989). Second, Uno et al. (unpublished observation) introduced nonlinear 
coordinates transformation between the hand position on a 2-dimensional position 

digitizer and the CRT coordinates where the end point, the start point and the hand 

position were displayed. Because of the nonlinear transformation, a straight line 

on the CRT corresponds to a curve on the digitizer, and vice versa. Subjects first 

generated roughly straight hand paths on the CRT. This is close to the minimum 

jerk trajectory in the visual task space (CRT coordinate). After several periods of 
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training, they tended to generate roughly straight hand paths on the digitizer (i.e. 

curved paths on the CRT), which are the minimum torque-change trajectories (Uno 

et al., unpublished observation). These experiment data could be explained. if the 

step-by-step computation is taken over by direct computation with motor learning. 

In the first case, the forward dynamics model of an arm in combination with the 

spring must be relearned. In the second case, the forward kinematics model of an 

arm in combination with the imposed nonlinear transformation between the digitizer 

and the CRT must be relearned. Thus, the step-by-step computation seems to be 

temporarily utilized until the forward model is relearned. We do not think these 

・observed changes of trajectories from the minimum jerk type to the minimum torque-

change type with motor learning can be explained only by the combination of the 

minimum jerk trajectory planning and virtual trajectory control (Hogan, 1984; Flash, 

1987) because this class of the step-by-step computational model has no capability 

of learning or adaptation with practice. 

In section 5.2, we showed that the cascade neural network generated only fairly 

good torque waveforms on the minimum torque-change criterion. The estimated tra— 

jectory by the network was fairly close to the minimum torque-change trajectory and 

its end point is exactly the same as the desired end point (see Fig. 5 .. 2b). However, 

the realized trajectory was considerably different from these two, and in particular 

the end point of the movement was different. The deviation of the end point is a 

serious problem. We can attain the desired end point even with an incomplete for-

ward model by combining the original feedforward control with feedback control. We 

make use of the fact that the estimated trajectory reaches the desired end point. The 

estimated trajectory is used as a desired trajectory in the feedback control. Conse-

quently, the torque fed to the controlled object is a summation of the feedforward 

torque generated by the neural network model and the feedback torque which is 

calculated in real time based on the error between the estimated desired trajectory 

by the network and the realized trajectory. We can infer two predictions from this 

composite feedforward and feedback control. First, if the learned forward model is 

inaccurate, the realized trajectory and the total torque fed to the controlled object 

would be quite jerky, especially around the end point near the movement end time. 

Second, conversely, as the forward model is improved, the role of the feedback control 

decreases, and hence the jerkiness of the movement is reduced. Schneider and Zer-

nicke (1989) reported decrease of jerk cost during practice. This might be explained 

as improved control performance caused by an intensive learning of forward dynam-

ics and kinematics of the arm for a special task. Some motor control schemes, such 

as the equilibrium trajectory approach (Hogan, 1984; Flash, 1987), do not support 

efficient movement refinement during practice. Finally, the composite feedforward 

and feedback control can cope with a sudden perturbation of movement whereas the 

pure feedforward control can not. 

Examination of human multi-joint arm movement in three-dimensional space 

while avoiding obstacles, and comparison of the experimental data with predictions 

of the present model are our future problems. 
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Appendix: Relationship of the cascade network with the first-
order gradient algorithm 

In this appendix, we use notations in Section 2. The problem stated in Definition 1 

can be solved by the following first-order gradient algorithm. 
Let u denote the co-state +. Then, the dynamics equation can be formally rewrit-

ten as follows, using a composite state variable W = (0, 0, r) T: 

.

.
 E
4
 

~,a dW/dt = A(0, 0, r, u), .. (6.1) 

here, Wis a (2n+m)-dimensional vector, and A is a (2n+m)-dimensional nonlinear 
function, and is defined as (0, /(0, 0, r), u)T. The adjoint equation of this equation is 
given as: 

雌 /dt= -(IJA/8Wf'1!. (6.2) 

屯 isalso a (2n + m)-dimensional vector. The first n component, the second n 
component and the last_ m component of W are denoted as妬，叱， and叱， since
they correspond to 0, 0, and r. The first-order gradient algorithm, a numerical 

method in optimal control theory is described as follows (Bryson and Ho, 1975). 

(step 1) Estimate an initial control u0(t). 

(step 2) Integrate the system eq. 6.1 with the specified initial conditions W(O) and 
the specified control variables history. Record W(t). 
(step 3) Backward integration of adjoint equation 6.2 to determine w(t), with 

the specified control u(t), the trajectory W(t) and the terminal condition w(り）＝
Wd(り)-W(り） • Here, Wd(り） are desirable terminal conditions for the trajectory. 
(step 4) Modification of the control according to the steepest descent of the Hamil-
tonian: 

8u(t) = c:(一畑＋叱(t)). (6.3) 

(step 5) Repeat steps 1 through 4, using an improved estimate of u(t) until the error 
is admissible. 

It is clear that the forward calculation through the cascade network is conducting 
the step 2. We will show that the backward propagation of errors through the cascade 
structure is partially equivalent to the step 3. The adjoint equation can be rewritten 
in components as follows. 

ぷ`

岐 0/dt

d妬/dt

d叱/dt

-(af /a0f妬
ー如ー (af贋）T妬

-(af/街）T妬・

(6.4) 

(6.5) 

(6.6) 

It is not difficult to see that the backward numerical integration of the first two 

equations is equivalent to the error back-propagation through the cascade network 

based on eq. 3.12. This is because the partial derivatives (fJf /00), (of/蹄） and 
({) f /OT) are calculated by back-propagation within each network unit. The reason 

that the network can calculate exact ¥JI。and屯0although it does not contain either 

the co-state u or the corresponding屯ris that the adjoint equations do not contain 
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'11 r in the right side. Because the network does not contain the co-state u, it cannot 

use equation 6.3 and hence needs to introduce direct interactions between the motor 

commands. This is the box diffusion interaction (electrical couplings) between control 
variables. 

“ 
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