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Abstract: It was revealed that a trained individual, i.e., a labeler, could perform accurate specch
labeling and that such accuracy was based on his/her flexible decision process using many kinds of
spectrographic features. In this paper, a new relaxation-based speech labeling system which duplicates
the ability of the labelers is proposed. To realize the trial-and-error process of the labelers in the system,
we have adopted a blackboard model and a discrete relaxation process.The system consists of a
blackboard, and three subsystems: an acoustic analyzer, a verifier, and a supervisor, The blackboard is a
working memory through which the three subsystems communicate with each other, and allows the
system to realize the complicated behavior of the trial-and-error process. The acoustic analyzer computes
many kinds of acoustic parameters, e.g., formant and pitch frequencies, corresponding to the
spectrographic features used by the labelers. Also, the verifier is broken down into a symbol
hypothesizer, and two kinds of functions: boundary detectors, and label identifiers. The verifier, with a
behavior principle based on the relaxation process, efficiently performs the hypothesis verification for
many of the label candidates. The supervisor controls the whole system. Preliminary experiment results
show that the performance of the system is comparable to the performance of the labelers.

1. Introduction

A large-scale speech database with precise labels is indispensable to research 6n speech; here
the label means a speech wave segment and its corresponding symbol which describes the acoustic
characteristics within the segment. To construct such a database, one must overcome the inevitable
difficult task of labeling. There are two possible approaches of labeling: a machine-labeling and a hand-
labeling approach. Given any excellent labeling system, machine-labeling will obviously be more
efficient than hand-labeling. However achieving the perfect system is unrealistic. We must therefore
patiently carry out work corresponding to the hand-labeling and correct the machine-created labels. On
the other hand, though time-consuming, hand-labeling by experts, i.e., labelers, will certainly produce
the most desirable labels [Katagiri 88a]. Considering these aspects of the two approaches, we decided to
adopt hand-labeling at least in building up the foundations of ATR speech databases [Takeda 871.

Al present hand-labeling is proceeding smoothly, and the sets of speech waves and labels
corresponding to several tens of thousands of words are available. We are now in the second step; the
labeling task should be reconsidered from a new standpoint, where we have already acquired many kinds
of heuristics on the labeling. We have accordingly started to design the labeling system. If the labeling
system were available, it could reduce the time-consuming work of the labelers and further advance the

standardization of Iabel quality. Furthermore, study of the labeling system will contribute to research on




-

speech recognition, because the main tasks in the labeling, i.e., ‘speech segmentation and label
identification, are also key tasks in recognition.

Promising approaches for the labeling or recognition system can be classified into a stochastic
model-based approach and a knowledge-based approach. Recent works have suggested that the stochastic
model-based system can be a viable candidate for a speech recognition system [Waibel 87][McDermott
88]. Accordingly, the stochastic modcl-based labcling system may also be hopeful. However, the
stochastic model-based system requires enormous data to train itself, which is obviously a contradictory
requircment, at least in the labeling work. We indced need the labeling system to prepare the databases.
On the other hand, the spectrographic featurcs used by the labelers are clearly specified and their decision
processes are explicit [ATR 88][{Takeda 88]. As some speech recognition expert systems based on the
spectrogram reading have been attempted [Zue 86], we can construct a labeling system duplicating the
ability of the labelers. Such a knowledge-based system will consequently be one of pragmatic
solutions to the machine-labeling problem, ’

In this paper, we present a new rclaxation-based speech labeling system, which duplicates the
ability of the labelers; the system is a kind of knowledge-based system, The hand-labeling is
characterized by a flexible decision process, in other words, a trial-and-error process, using many kinds
of spectrographic features [Katagiri 88aJ[ATR 88]. Accordingly, to duplicate this complicated process,
we have adopted a blackboard model in the Al techniques [Hayes-Roth 85] and a discrete relaxation
process [Rosenfeld 76]{Katagiri 88b].The details and performance of this system will be described in the

following paragraphs.

2. System Description
2.1 Overview

~Our experiments have revealed that trained labelers are able to create accurate and consistent
labels on a spectrogram, and also suggested that the labelers make their decisions in & very flexible
trial-and-error process [Katagiri 88a]. Furthermore, in the daily work of hand-labeling, we can easily
observe the following points; though the labelers don't quantitatively measure the spectrographic
features, they skillfully accomplish difficult tasks: topological analysis of the spectrographic features
and speaker adaptation in the labeling, etc. We think that their skill is mostly due to a flexible trial-
and-error process. ‘ _

To duplicate these advantageous aspects of hand-labeling, we have adopted the system structure
shown in figure 1. The system is broken down into a blackboard and three subsytems: an acoustic
analyzer, a verifier, and a supervisor. The system is based on a kind of a blackboard model in the Al
area, which structure allows the system to rcalize a flexible decision processes. The three subsystems
communicate with each other through this blackboard. The acoustic analyzer computes the acoustic
parameters corresponding to the spectrographic features used by the labelers. Also, the verifier is broken

down into symbol hypothesizer, and two kinds of functions: boundary detectors, and labe! identifiers,




The verifier, with a bchavior principle based on the relaxation process, efficiently performs the
hypothesis-verification for many label candidates. The supervisor controls the whole system. .

The notations and terms uscd in this paper are shown in table 1. In the system, many terms
and notations are defined; they will help us precisely understand the step-by-step behavior of the

system, The details of the system are described in the following sections.

2.2 Blackboard

The idea of the blackboard is based on the blackboard model in AT systems. Using this idea,
we can perform elaborate decision processes with different kinds of knowledge. In this labeling system,
this blackboard plays a key role as a working memory through which the three subsystems
communicate with each other; the subsystems and the functions included within the verifier pick up
some entries from the blackboard as their inpuis and enter their outputs onto the blackboard. All the

parameters and candidates for the labeling shown table 1 are entered there.

2.3 Acoustic Analyzer
2.3.1 Acoustic Parameters

The acoustic parameters corresponding to the spectrographic features in the hand-labeling are
computed in the acoustic analyzer. The pitch frequency [_P_] is derived from the cepstrum analysis. The
formant frequencies [_Fx_] and bandwidths [ FBx_] (x=1,2) are computed with the root finding of the
LPC model; F1 and F2 mean the first and sccond formant, respectively. A short-term power [ PW_],
short-term band limited powers [ BPx_] (x=1,2,...,16) are also calculated; the frequency scaling in
[_BPx_] is based on the Melscale spectra {Waible 81]. The spectrum change parameter is based on the
fluctuation in LPC cepstrum coclficients [Sagayama 79). The detailed specification of the acoustic
analyzer is shown in table 2. Also, an output example of the acoustic analyzer is shown in figure 2; the

labels by the hand-labeling are overwritten,

2.3.2 Estimation of Pitch and Formants ;

As shown in figure 2, the computed [requencies of the pitch and the formant, i.e., [ P_] and
[_Fx_], are not desirable estimates. For example, we can find the pitch and formant contours during the
label [cl] (closure), and also find discontinuity of the pitch contour during the labels, [i] or [o] (vowels).
These parameters are particularly important for voiced/unvoiced decision and vowel categorization, To
make a reliable decision, more precise estimates for the pitch and formants are obviously needed.

The precise estimation of the pitch and the formant requires several kinds of knowledge about
acoustic phonetics; it is difficult to acquire the right estimates using only simple and straight{forward
signal processing algorithms. Therefore, the confidence scores for these estimates are calculated by
using the knowledge base and other acoustic parameters. The knowledge base is prepared in the acoustic

analyzer. We have named this procedure the knowledge-based confidence scoring
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The principal idea to calculate the confidence scores is described here. We have utilized some
requirements for the desirable characteristics of the pitch and the formants, These requirements are
relative 1o the formant frequency [_Fx_], the formant bandwidth [_FBx_], the pitch frequency [_P_],
short-term powers [_PW_] and {_BPx_}, periodicity of the pitch (cepstrum coefficient value of the
narrow peak which is expected to correspond to the right pitch frequency) [_C_], and continuity of the
pitch and formant contours. Also two continuity parameters, [Pcont] and [Fcont], are defined for
representing continuity of the pitch and the formant contours, respectively. Furthermore the bounded
monotone functions which map the acoustic parameters to the confidence scores are designed according
1o the acoustic phonetics; here, the more reasonable the parameters, the higher the mapped confidence
scores. The confidence scores are calculated at cach discrete time index according to the following

expressions;

Cp(n) = F1(L_BPx_1(n)) x £2(L.C_1(n)) x f3({Pcont](n)),
Cfx(n) = f4(L_BPx_](n) x £5(L_FBx_}(n)) x f6([Fcont}(n)).

Cp(n): the confidence score for the pitch

Cfx(n): the confidence score for the x-th formant ( x=1,2)

Here (n) represents the discrete time index. A function fj(y)
(=1,2,...,6) is a kind of bounded monotone function. The .

functions in addition to f5 are designed so that the larger their

inputs, the larger their outputs. On the other hand, £5 is

designed so that the narrower the [_FBx_], the larger the output of f5.

Also, to acquire a smoothed contours, we have adopted a median smoothing technique. In this
smoothing, only the estimates with high confidence scores are used. The estimates with low confidence

scores don't affect the resulting estimates.

2.4.Verifier
2.4.1 Overview

The verifier includes a symbol hypothesizer and two kinds of functions: boundary detectors and
label identifiers. The task of the verifier is to perform the labeling under the relaxation process; this
subsystem plays a central role in the whole system. The detailed behavior is described here.

As described before, the label consists of the speech segment and its corresponding symbol; in
this system, 31 label symbols shown in table 3 are used. These are mostly the same as the symbols
used in hand-labeling at ATR [Katagiri 88a)[Takeda 87]. Furthermore, 463 pairs of label symbols are
allowed to represent the adjacent labels. These limited pairs are selected‘out of all the label symbol
combinations (31 x 31 combinations); the limitation is based on the labeling rules [ATR 88][Takeda
87].




As shown later, 1abel identification is preceded by the boundary detection. The reasons for this
are as follows.(1) Since the change of the acoustic parameters around the segment boundaries are
dominant and consistent, the boundaries are easier to find than the centers of the segments.(2) If some
function must cope with undesirable variations of the acoustic features due to co-articulation, the
implementation of the function would be complicated and decrease the modularity of the system design;
such a function would be complicated, with many rules. The simple boundary detector which is
composcd of a few simple rules and focused on the acoustic variations peculiar to every pair of labels
should be positively implemented.

Accordingly, the dctailed acoustic characteristics peculiar to the local region sandwiched
between adjacent label scgments are utilized to detect the boundary, and the gross but stable
characteristics which can certainly appear in the whole label segment are used to identify the label
category. These functions are designed according to the heuristics which we have already acquired in the
hand-labeling work [Takeda 88][ATR 88].

2.4.2 Symbol Hypothesizer

The symbol hypothesizer translates a given speaking text, such as (i k i o i), into a string of
possible labels, ([_i_1[_>_1[_cl_I[_ k [ i_1[ o_]); here the term "possible” means the possibility of
appearing in the resultant labels. The label symbols which are not selected here will not appear in the
outputs of the system '

In this step, the location and duration of the possible label are not specified; they will be
decided in later steps. All the outputs with a speaking text (i k i o i) given are shown in figure 3. In

this figure, we can find surprisingly many variations of the strings with a short speaking text .

2.4.3 Boundary Detector

One boundary detector is prepared for every pair of adjacent label symbols. The boundary
detector corresponding to the pair of adjacent possible labels is selectively triggered. Suppose that there
are two possible labels [ x_] and [_y_] scen in the outputs from the symbol hypothesizer. Then the
detector <BD-x-y> is selected and triggered, <BD-x-y> searches for the boundary can_didale [ bd-x-y_Jon
a speech wave from left to right; a number of [_bd-x-y_] candidates will appear.

Now there are several boundary candidates on the blackboard. Selecting two of these candidates,
we can set a segment. This process is described in detail here. Suppose that there are three boundary
candidates: { bd-i->_], [ bd-i-o_], and [_bd-o-i_]. If combining [_bd-i->_] with [_bd-i-o_1, the segment
sandwiched between these two boundary candidates would have incompatible label symbols, i.e., {>]
and {i}. On the other hand, by combining [_bd-i-o_] with [ bd-o-i_], the segment between them would
have a compatible label symbol, namely, {0). The segment with the compatible label symbol is
defined as the possibie label [ _o_]. Obviously the order in combining the boundary candidates is
imporiant; if and only if we combine the preceding boundary candidate with the following boundary

candidate along with the given order, we will have a meaningful segment, i.e., a segment with positive



duration. It is easy to understand that the process of searching for compatible label symbols, in other
words, the possible labels, is one of discrete relaxation; according to the compatibility, many
combinations of the boundarf candidates are effectively reduced to a small set of the possible labels.
The criterion in relaxation, i.e., compatibility, can be summarized as follows.

There are two boundary candidates: the preceding one, such as [_bd-x1-y1_], and the following
one, such as [_bd-x2-y2_]. If the label symbol {y1} is the same as the label symbol {x2}, the segment
sandwiched by these two boundary candidates is set as the possible label [ y1_1, (y1=x2).

2.4.4 Label Identifier

It should be remembered that the boundary detector is focused on the local region around the
boundary candidates rather than on the whole segment. We need to investigate the acoustic
characteristics of the whole segment , and examine whether the possible label actually exisis or not.

Here one label identificr is prepared for every label symbois. In this step, the label identiﬁers‘
corresponding to the possible labels are selectively triggered; e.g., <LV-x> is triggered and examines
whether the possible label [_x_] actually exists or not at the region where it was hypothesized
beforechand, and emits a confidence score for [_x_]. Here, since the label identifier is triggered at the

hypothesized region, it does not work from left to right.

2.5.Supervisor

The supervisor controls behavior of the whole system. This subsystem always monitors the
blackboard and selectively triggers the subsystems and the functions in the verifier. After all the
procedures are performed,'lhe supervisor emits the possible labels with scores higher than the

thresholds; these labels are the results of the system.

3. Experiment
3.1 Overview |

We are now expanding many of the boundary detectors and labe! identifiers. The system is still
not able to emit all kinds of labels. Thus, in this paper we have monitored system behavior and made a
preliminary evaluation of the system performénce though limited experiments. Speech data used here
are the phonetically batanced 215 Japanese words uttered by two female speakers; they are parts of the

data used in the previous experiments [Katagiri 88a].

3.2 System behavior

Looking at the blackboard, we can follow system behavior, Part of the blackboard with a
speech wave and its corresponding speaking text (i k i o i) given to the system is shoWn in figure 4;
the outputs from the boundary dctectors in (4-a), and the outputs from the label identificrs in (4-b). We

can see that only a few functions in the verifier are actually triggered under the relaxation.



3.3 Preliminary Evaluation of System Performance
(V/UV Segmentation) |

If an acceptable pitch estimate is found, the speech is characterized as voiced with the indicated
pitch frequency; and if no reasonable pitch estimate can be found, the segment is identified as an
unvoiced segment. Therefore, it is important to avoid spurious response in the unvoiced segment as
well as to get accurate pitch frequencies. Similarly the lower formants are the key features in the
voiced/unvoiced (V/UV) decision. Furthermore the formant frequencies contain important information
for vowel categorization, The pitch and formant estimation are obviously quite relative 1o the V/UV
decision and are important bases for the later decisions, e.g., the precise labeling.

In this experiment, to estimate the principal capability of the system, we focused on the
performance of the V/UV segmentation, and actually evaluated the performance of the knowledge-based
confidence scoring for the pitch and formants, and the V/UV segmentation. The definition of voicing is
as follows: the voiced segment possesses the estimated contours of both the pitch and the 1st formant.

It is rather difficult to evaluate the accuracy of the estimated pitch and formant frequencies for
natural speech waves; the reason for this is that the true values are unknown. Therefore we indirectly
evaluated that scoring through V/UYV decision performance. Here, the high performance in the V/UV
decision was expected to guarantee accurate estimates of pitch and formants.

The estimated pitch and formant contours through knowledge-based confidence scoring and
median smoothing are shown in figure 5. The acceptable pitch and formants are shown in this figure.

Also, the correct ratios of the V/UV de;isions (%) are shown in figure 6. The ratio means the
durational ratio of the region, calegorized as the voiced segment, to the whole Iabel segment. In figure
6, each bar graph indicates the average ratio for all the segments by two speakers, label by label. For
example, when the region of the ;egmcnt [p} is idcnliﬁcd as the unvoiced segment, the decision is
correct; when the region of the segment [a] is identified as the unvoiced segment, it is incorrect.
Therefore, for the voiced labels, the higher the ratios, the more desirabie the results; for the unvoiced
labels, the lower the ratios, the Icss desirable the results. This figure shows that, although the system
is still in the preliminary stage, the performance is mostly good. However, we obviously need to
improve the functions in the verificr; in particular, the [unctions related to lhe‘liquid ({r]}) and the
plosives ([p], [t], [k], [bl, [d], [g]) should be sharply improved. These label segments with low
performance are of short duration. The analysis conditions in the acoustic analyzer would be somewhat
inappropriate. To resolve this difficulty, we have to add some rules to compensate the acousL}c analyzer

outpults.

4. Conclusion
In this paper, we proposcd a relaxation-based speech labeling system, and showed the
preliminary experiment results; we showed the principal behavior of the system, and we evaluated the

performance focused on the V/UV segmentation. It was consequently revealed that, although the



implcmentation of the system was still in a preliminary stage, the system accomplished good

segmentation. Encouraged by this result, we are now continuing to extend the system,
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Table 1 System notations and lerms.

Table 3 Symbols for labels.
 PART T - symbols acoustic events
The following are used for general discussione.
ix] __label symbol x slueo vowel sicady portlon
{x-y} palr_of udjacent label symbols, {x} and {y} < preceded by
fx] label associaled with the label symbol {x} voiceless
[od-x-y} boundary beilween The sdjacent labels, [x] > ~vow;:l consonant
and fy] partion foliowed by
*> voiced consonant
- PART Ul -
The lollowing are nolatione or terms used In the sysiem. tr phonctically inexplicable portion
acoustic feniure pitch frequency [P] {Hz) ptkb,dg burst, frication and aspirstion for plosives
{o;::n;)lrequancy [P () cl voiceless consonants (silent)
=1, )
*cl closure voleed consonants (buzz)
acoustic parameter pitch frequency [ P_] (Hz) for
cepslrum amplliude mm nagal (murmur)
corresponding to plich peak
[ ] ts,ch wffricates
formant frequency [Fx_] (Hz} - fﬂ:gz"for
{x=1,2) #,h,shz,d] po fricatives
formani bandwidth [_FBx_] {Hx)
{x=1,2) r Hiquid (colncide with phonemic
shori-lerm power | Pw 1 [dH} o iy ) scgments)
band-limlied shott-term power ¥ semi-vowe »
[ BPx_ ] (dB) (x21,2,..,16) N syliabic nasal
spectrum change parmeter
Lsc 1 palatalized vowel like portion
Lx1 Iabel candidate for {x} ‘ pau pause Interval
{ poas|ble label } !
[ bd-x-y ] boundery candidate for [bd-x-y}
«LV-x> isbel ldentitier for {x}
«BD-Xx-y> boundary delecior for [bd-x-yj

Table 2 Acouslic analyzer speclfication.

pre-emphasis

{ime window

FFT

LPC

LPC cepsirum
pltch

Me!l spectrum

first-differencing

Hamming window of 30 msec
shift interval of 2.5 msec

512 points

13 poies
autocorrelation method

13 coelficients
FFT cepstrum based detection

16 coefficlents [Walbel 81]
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Figure 3 Outputs from symbol hypethesizer
when a speaking text (I k 1 o 1) Is given.
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Figure 2 An example of outpuls from the
acoustic -analyzer.

The figure Is divided inlo four parts, Conlours
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Figure 4 An exampie of entries on blackboard.
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Figure § An example of estimated plich and
forman! conlours.

These conlours are refined by knowledge-based
conlidence scoring and median-smoothing.
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The volcing ratlo means the ratlo of the segment duration which was
categorized as volced 1o the whole label segment duratlon. Here, each bar
graph Indicates the ratlos lor all segments by two speakers, Iabel by
label. For the voiced labals, the higher the ratios, the more desirable the
rosults; for the unvoliced labels, the lower the rallos, the more desirable
the results.
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