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Abstract: 

In this paper, we prove that any continuous mapping can be 

approximately realized by Rumelhart-Hinton-Williams'four-layer 

neural networks whose output functions for hidden units are 

sigmoid functions. We also show that for the approximate 

realization of continuous mapping, output functions need not 

always be sigmoid but can also be the sigmoid-like functions 

defined in this paper. This fact is proved by applying a lemma to 

the Kolmogorov-Arnol'd-Sprecher theorem。
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1. Introduction 

Since McCulloch-Pitts(1943), there have been many studies of 

mathematical models of neural networks . Recently, Hopfields, 

Hinton, Rumelhart, Sejnowski and others have tried many concrete 

applications such as pattern recognition and have shown that it is 

possible to clarify the mechanism of human information 

processing by use of these models. In particular, the back 

propagation algorithm[!] proposed by Rumelhart-Hinton-Williams 

provides a learning rule for multi-layer networks. Many 

applications of this algorithm have been shown recently. 

However, there has been little theoretical research on the 

capability of the Rumelhart-Hinton-Williams neural network. 

Hecht-Nielsen[6] pointed out that Kolmogorov's theorem and 

Sprecher[4]'s refinement, which are both known as negative 

solutions of Hilbert's thirteenth problem, show that any 

continuous mapping can be represented by a form of four-layer 

neural network. Poggio[5] has also pointed this out. That the 

output function of each unit of this network is not concrete 

monotonic increasing function like the sigmoid function is, 

however, a difficult point. 

On the application to pattern recognition, Lippmann[2] asserts 

that arbitrary complex decision regions, including concave regions, 

can be formed using four-layer networks, but this is only an 

mtmt1ve assert10n. 

In this paper, we apply a lemma to the Kolmogorov-Arnol'd-

Sprecher theorem and show mathematically that any continuous 

mapping can be approximated by four-layer networks whose 

units have a sigmoid output function, except for those of the input 

and o・utput layer. We also show that output functions need not 

always be sigmoid and that approximate realization of continuous 

mappings is possible using sigmoid-like functions defined below. 

McCulloch-Pitts showed that any logical circuit can be designed 

using their model. Correspondingly, our assertion especially 

shows that any continuous mapping can be approximately 

represented by the Rumelhart-Hinton-Williams multi-layer 

network. 

2. Rumelhart-Hinton-Williams'Neural Network 

The Rumelhart-Hinton-Williams multi-layer network that we 

consider here is a feed-forward type network with connections 
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between layers only. Networks generally have hidden layers 

between the input and output layers. Each layer consists of 

computational units. The input-output relationship of each unit 1s 

represented by inputs Xi, output y, weights wi , threshold 0, and 

differentiable function <I> as follows: 
n 

y = <I>(}:w岱i-0) . 
i=l 

The learning rule of this network is known as the back 

propagation algorithm[l]. The back propagation algorithm is an 

algorithm that uses a gradient descent method to modify weights 

and thresholds so that the error between the desired output and 

output signal of the network is minimized. It is standard to use a 

monotonic increasing function such as the sigmoid function as each 

unit's output function. 

3. Kolmogorov-Arnol'd-Sprecher's Theorem 

Let I = [0,1] denote the closed unit interval, 1°=[0, 1]0 (n~2) the 

cartesian product of I, and x=(x1, …, Xn) the points in Euclidian 

space R0. 

In his famous thirteenth probl~m, Hilbert conjectured that 
there are analytic functions of three variables which cannot be 

represented as a finite superposition of . continuous functions of 

only two arguments. Kolmogorov [3] and Arnol'd refuted this 

conjecture and proved the following theorem. 

Theorem(Kolmogorov). 

Any continuous functions f(x1, …ぷn)of several variables defined 

on rn (n~2) can be represented in the form 

2n+l n 
f(x) = L X j (L粕j(xi)), 

j=l i=l 

where'.Xj,'l'ij are continuous functions of one variable and'l'ij are 

monotone functions which are not dependent on f. 

Sprecher[4] refined the above theorem and obtained the 

following: 

Theorem(Sprecher). 

For each integer n~2, there exists a real, monotone increasing 

function ¥jf(x), ¥jf([0,1])=[0,1], dependent on n and having the 

following property: 
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For each preassigned number o >0 there is a rational number e, 

0 < e < o , such that every real continuous function of n variables, 

f(x), defined on rn, can be represented as 

2n+l n 
f(x) = L X [ Lい'If(Xi+ e (j-1)) + j-1 ] 

j=l i=l 

where the function x is real and continuous and入isan 

independent constant of f. 

Hecht-Nielsen[6] pointed out that this theorem means that any 

continuous mapping f : rn→ Rm is represented by a form of four-

layer neural network with hidden units whose output functions 

are'I', x i(i=l, …, m). 

output layer 

(linear output functions) 

second hidden layer 

(output functions Xi) 

first hidden layer 

(output functions'I') 

input layer 

(linear output functions) 

FIGURE. a four-layer network representing a continuous mapping 

4. Approximate Realization of Continuous Mappings by 

Neural Networks 

In section 3, we reviewed Kolmogorov's theorem and its 

refinement from the point of view of neural networks. We shall 

consider the possibility of representing continuous mappings by 

neural networks whose output functions in hidden layers are 

sigmoid cj>(x) =1/(1 +exp(-x)), for example. It is simply noted here 

that general continuous mappings cannot be exactly represented 

by Rumelhart-Hinton-Williams" networks. For example, if a real 

analytic output function such as the sigmoid function is used, then 

an input-output mapping of this network is analytic and generally 

cannot represent all continuous mappings. 
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4.1 Sigmoid-like Functions 

Therefore, the possibility of an approximate realization of 

continuous mappings by neural networks must be discussed. We 

will prove that any continuous mapping can be approximated by 

input-output mappings of four-layer networks whose output 

functions for hidden layers are sigmoid, or sigmoid-like as defined 

below. Therefore, for the first time, we introduce the concept of 

sigmoid-like functions. 

Definition. 

A continuous function <j>(x) is called sigmoid-like if and only if 

<j>(x) is a bounded function where <!>(oo) = lim <!>(x) and <!>(-00) = lim <j>(x) 

X→OO X→-00 

d 
exist, <j>(oo)一<1>(-00)=l , and its derivative cp'(x) =一

dx 
<j>(x) IS 

summable and non-negative. 

Remark. A sigmoid-like function <j>(x) has the property that if we 

set <l>e(X)= <j>(x/e) (e > o), then the derivatives <l>e'(x) = (1/e) <j>'(x/e) 

converge, in the sense of the generalized function[9], to the o 
function as e→ 0. 
Example 1. For the sigmoid function <j>(x)=l/(1 +exp(-x)), 

<l>e'(x)=l/e exp(-x/e)/(1 +exp(-x/e))2~nd <j>(x) is a sigmoid-like 

function. 
X 

Example 2. For <I> (x) =1/ ✓三汀exp(-t2/2) dt, 叫 (x)= 1/ ✓ 2誌
-oo 

exp(-x2/2E) and <P(x) is a sigmoid-like function. 

Example 3. For <j>(x) where <j>(x) = 0 (x < 0), <j>(x) = x (0 s;:. x < 1) and 

<j>(x) = 1 (x~1), <l>e'(x) = 0 (x < 0 or x~E), <l>e'(x) = 1/E (0~x < E), and 

<j>(x) is a sigmoid-like function. 

In McCulloch-Pitts neural model and Perceptrons, a threshold 

function <j>(x) =1 (x~O), =0 (x<O) is used as the output function. 

Sigmoid-like functions <j>(x) where <j>(一00)=0are appropriate as 

output functions in the neural model because if we set <l>E(x) = 

<j>(x/E) (E > o) then these converge to the threshold function in the 

McCulloch-Pitts neural model and Perceptrons as E→ +O. A key to 

the success of the back propagation algorithm in a multi-layer 
network is in the use of differentiable functions as output 

functions. Here, the class of output functions is not limited, but 

this paper will be limited to the point of view that the concept of 
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sigmoid-like functions can be used to represent a model of the 

output function of a neuron. 

4.2 Approximate Realization of Continuous Mappings 

The following is the fundamental theorem for the approximate 

realization of continuous mappings. 

Fundamental Theorem. 

Let <j>(x) be a sigmoid-like function. Any continuous mapping 

f: Jn→ Rm (n;;:;2) can be approximated in the sense of uniform 

topology on Jn by input-output mappings of four-layer networks 

whose output functions for hidden layers are <j>(x), and whose 

output functions for input and output layers are linear. That is to 

say, for any continuous mapping f : Jn→ Rm and arbitrary E >0, 

there is・a four-layer network whose input-output mapping is 
ぶ―---"

given by f : Jn→ Rm and such that 

max d(f(x), 貰x))< E 

XE Jn 

where d(,) is a metric which induces the usual topology of Rn. 

We will prove the above fundamental theorem in the next 

section. 

McCulloch-Pitts shows that one can design any logical circuit 

using their model. Correspondingly, the above theorem shows 

that any continuous mapping can be approximately represented 

by multi-layer・networks. 

Let'V be a strictly increasing continuous function such that 

'Jf((-00,00)) = (0,1). If the mapping f takes values in (0,1)叫 'Vcan 

be taken as an output function for the output units. That is to say, 

the following is obtained. 

Corollary. 

Any continuous mapping f : Jn→ (0,1沖 canbe approximated 

by input-output mappings of four-layer neural networks whose 

output functions for hidden layers are a sigmoid-like function cj>, 

and output functions for the output layer are'V as stated above. 

(proof) 

Set f(x) = (f 1 (x), …，fm(X)). As'Jfー1: (0,1)→ (-00,00) is 
continuous, the fundamental theorem is applied to the mapping 

x曰 v1f(x)=('Jf-1f(x), …, W―1fm(x)) and the corollary is obtained 

easily. 

q.e.d. 
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For the application of neural network to pattern recognition, if 

m is the number of recognized categories, usually m output units 

corresponding to these categories are used, and the system is 

allowed to learn to take values near 1 only for units corresponding 

to the input categories. This corollary shows that if one uses four-

layer networks, any decision region can be formed by a neural 

network. In particular, a monotonic increasing sigmoid-like 

function, defined above as the output function of each unit, can be 

chosen。

5. Proof of the Fundamental Theorem 

The Kolmogorov-Arnol'd-Sprecher theorem and the following 

lemma are used to prove the fundamental theorem. 

Lemma. 

Let g(x) be a continuous function on R and cp(x) a sigmoid-like 

function. For an arbitrary compact subset (bounded closed subset) 

K of R and an arbitrary E > 0, there are an integer N and constant 

ai, bi, Ci (i=l, ... ,N) such that 

N 
g(x) -ICi cj)(aix+bi) I < E 

i=l 

holds on K. 

(proof) 

There is a continuous function徴x)on R which has a compact 

support such that忽x)= g(x) on K. We may prove the lemma for 

敬x)and so we may initially suppose that g(x) has a compact 

support. For the arbitrary E > 0, we will approximate g(x) on K by 

a -summation of sigmoid functions whose variables are shifted and 

scaled. Initially, we can approximate g(x) by a simple function 

(step function) c(x) with compact support so that 

I g(x) -c(x) I < c:/2 (1) 

on R and whose step variances are less than c:/4 . Here c(x) is 

represented using the Heaviside function H(x) as follows: 
N 

c(x) = I Ci H(x-xi) 
i=l 

For the sigmoid-like function cp(x), set <l>a(x) = cj)(x/a) (a > .0)。

d 
Then <l>a'(x) = -<1>a(x) converge to the delta function as a→ 0. We 

dx 

consider the convolution C*<l>a'(x) of c(x) and <l>a'(x). We set 

2c:'="minimum width of steps" and obtain 



，
 

00 

c(x) -c *<l>a'(x) = J <l>a'(y)[c(x)-c(x-y)]dy 
-oo 

Divide the integrand of the right term into (-00, -e'), [-e', e'], 

(e', 00) and estimate these using the definition of a sigmoid-like 

function. For example, 

e' 

f <l>a'(y)[c(x)-c(x-y)]dy I 
-e 

00 

< e/4 J<l>a'(y)dy = e/4 
-oo 

and other terms will be arbitrarily small for a sufficiently small 

a.. Therefore we obtain 

I c(x) -C*q>a'(x) I < E/4 

As c *$a'(x) = c'*q>a(x) and c'(x) is given by 

N 
c'(x) = L Ci o(X-Xi) 

i=l 

and so, c *$a'(x) is represented as follows: 

N 
C*転'(x)= L Ci転 (X-Xi). 

i=l 

That is to say, 
． N 

c(x)ー LCi <l>a(X-Xi) I< e/2 
i=l 

Using (1) and (2) we obtain 

N 
I g(x)ー LCi <l>a(X-Xi) I < e 

i=l 

Here <Pa(X-Xi) = <)>(x/a-xi/a), so we set ai= 1/a , bi = -xi/a and 

the lemma is proved. 

(2). 

q.e.d. 

Next we prove the fundamental theorem. 

Proof of the fundamental theorem 

We represent f(x) = (f1 (x), …，fm(x)). We apply Sprecher's 

theorem to和(x)(p=l, …，m) and represent和(x)by the form 

2n+l n 
む(x)= L Xp [ L入苅(Xi+取j-l))+j-1] (p=l, …，m) 

j=l i=l 

where入and百areconstants. We apply our lemma to functions 

Xp,'I', and approximate these functions using the sigmoid-like 

funct10n <j>. 

Let K j U=l, …，2n+l) be the images of [0,I]n by mappings 
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'C j : X→ 土入i¥Jf(Xi元(j-l))+j-1 (j=l, …，2n+l) 

i =1 

and set K = u Kj. Take 8 > 0 and the closure K0 of 8 neighborhood 

of K. Continuous functions Xp (p=l, …, m) are approximated by 

N 

X p,N(x) = I Ci-N <!>(ai,NX+bi,N) (1) 
i=l 

so that 

I Xp(x) -X p,N(x) I < E/(4n+2) (p=l, …，m) (2) 

on Ko。 Asx p,N(x) are uniformly continuous on K0, sufficiently 
small 11 can be taken so that if I x-y I < 11 (x, y e K0) then 

IX p,N(x) - X p,N(Y) I < E/(4n+2) (p=l, …，m). 

We apply our lemma to'C j and approximate -c j on [0,l]n by't j,N' 

so that 

i
 

I't j(X) -'t j,N,(x) I < min(T¥, 8) 

where't j,N{x) (j=l, …，m) are defined as follows: 

We approximate w(x) by 

N' 

'VN•(x) = L, 苔<I>(釘x+bi)

i=l 

on 2ne neighborhood of [0,1] and set 

n 
't j,N•(x) = L入i叩N,(沢＋取(j-l))+j-1 (5) 

i =1 

(3), 

(4) 

so that the above inequality(3) is satisfied. Using a transformation 
2n+l 2n+l 2n+l 2n+l 

L Xp[町(x)]-L Xp,N[勺，N{x)]= L Xp['tj(X)] - L Xp,N[町(x)]

j=l j=l j=l . j=l 
2n+l 2n+l 

+ L Xp,N['tj(X)]一 LXp,N[勺，N{X)]
j=l j=l 

it is seen that fp(x) (p=l, …，m) are approximated by 
2n+l 

I Xp,N[勺，N{X)] (p=l, …，rn) 

j=l 

on [0,I]n so that the errors are less than E. Looking at the form of 

this approximation, the theorem is obtained. 

q.e.d. 
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6. Neural Network and Information Processing of the 

Brain 

In the Rumelhart-Hinton-Williams neural network, input and 

output values of each unit correspond to pulse-frequencies in the 

neuron and thus each unit, disregarding time characteristics, is a 

very simple model of a neuron. When a neural network is 

implemented for pattern recognition in engineering fields, output 

units correspond to the brain's gnostic cells. 

The approximate realization of continuous mappings usiHg, 

neural networks, which are simple models of the neural system, 

suggests that there are several gnostic cells in the brain and also 

shows the possibility of studying information processing in the 

brain through neural network approach. 

7. Summary 

As mentioned above, it is proved that any continuous mapping 

can be approximately represented by four-layer neural networks 

using the Kolmogorov-Arnol'd-Sprecher theorem and a lemma. 

Presently, for application of neural networks to pattern 

recognition or related engineering fields, up to four-layer 

networks are used[7][8]. The fundamental theorem proved here 

provides the mathematical base and its use would be fundamental 

in further discussions of neural network system theory. 
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